PIA01288.jpg =

PIA01288: Comet Hyakutake C/1996 B2

These are two images of the inner coma of Comet Hyakutake made on April 3 and 4, 1996, using the NASA Hubble Space Telescope Wide Field Planetary Camera 2 (WFPC2). The first one, shown in red, was taken through a narrow-band red filter that shows only sunlight scattered by dust particles in the inner coma of the comet. The second one, shown in blue was taken with an ultraviolet "Woods" filter image that shows the distribution of scattered ultraviolet radiation from hydrogen atoms in the inner coma. The coma is the head or dusty-gas atmosphere of a comet. The square field of view is 14,000 km on a side and the sun is toward the upper right corner of the image. Hydrogen atoms represent the most abundant gas in the whole coma of the comet. They are produced when solar ultraviolet light breaks up molecules of water, the major constituent of the nucleus of the comet. These images were taken as part of an observing program to study water photochemistry in comets. Measurements of hydrogen (H) and hydroxyl (OH) in the coma (or atmosphere) of Comet Hyakutake were also made using the Goddard High Resolution Spectrograph (GHRS) and the Faint Object Spectrograph (FOS). A self-consistent analysis of all the data shows that the water production rate of the comet was between 7 and 8 tons per second on the April 3 and 4. A theoretical model was used in the analysis which accounts for the detailed physics and chemistry of the photochemical destruction of the water, the production of the H and OH, and their expansion in the coma (or atmosphere) of the comet. The model matched the velocity measurements of hydrogen atoms made using the high spectral resolution capabilities of the GHRS instrument. The importance of such a detailed model is that is permits the accurate calculation of the production rate of water from observations of H and OH.

The inner yellow region near the center of the red dust image is dominated by the contribution from the dust which shows sunward directed spiral jets toward the upper right, and the thin straight particle trail pointing toward the lower left. The trail was a permanent feature of the comet around the time of its close approach to the Earth in late March and early April. Also barely visible just beyond the lower left end of the trail are two of the many condensations which were seen to travel slowly down the tail are believed to be clumps of material released from the nucleus.

The inner white region of the blue image appears to show that the hydrogen atoms like the dust might be preferentially ejected toward the sunward or day side of the nucleus. However, this is not true. The asymmetric ultraviolet radiation pattern is produced by a roughly spherical distribution of hydrogen atoms because they are so efficient at scattering the incoming solar ultraviolet light. The atoms on the sunward side actually shadow the atoms on the tailward or night side of the coma. The same detailed model analysis of the coma which explains the expansion of the hydrogen atoms in the coma also explains the appearance of the image.

The team was lead by Michael Combi, The University of Michigan, and included Michael Brown, California Institute of Technology, Paul Feldman, Johns Hopkins University, H. Uwe Keller of the Max Planck Institute, Lindau, Robert Meier of the Naval Research Laboratory, and William Smyth of Atmospheric and Environmental Research, Inc.

The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Space Flight Center for NASA's Office of Space Science.

This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/.

Voir l'image PIA01288: Comet Hyakutake C/1996 B2 sur le site de la NASA.

| | PIA01288: Comet Hyakutake C/1996 B2 PIA01290.jpg =

PIA01290: Hubble Probes Inner Region of Comet Hyakutake

These are NASA Hubble Space Telescope images of comet Hyakutake (designated C/1996 B2), taken at 8:30 P.M., EST on Monday, March 25 when the comet passed at a distance of only 9.3 million miles from Earth.

Unlike most of the published images of Hyakutake, these Hubble images focus on a very small region near the heart of the comet, the icy, solid nucleus. The Hubble images provide an exceptionally clear view of the near-nucleus region of comet Hyakutake.

The images were taken through a red filter with the Wide Field Planetary Camera 2 (in WF mode). The sunward and tailward directions are at approximately the 4 o'clock and 11 o'clock positions, respectively. Celestial North and East are at approximately the 5:30 and 2:30 positions, respectively.

FULL-FIELD VIEW (Left) This image is 2070 miles across (3340 km) and shows that most of the dust is being produced on the sunward-facing hemisphere of the comet. Also at upper left are three small pieces which have broken off the comet and are forming there own tails.

Icy regions on the nucleus are activated as they rotate into sunlight, ejecting large amounts of dust in the jets that are faintly visible in this image. Sunlight striking this dust eventually turns it around and "blows" it into the tailward hemisphere. What might be another jet is emanating from the nightside of the nucleus, but this direction might be misleading due to the angle of the jet relative to our line-of-site.

CLOSE-UP OF NUCLEUS (Bottom Right) This expanded view of the near-nucleus region is only 470 miles (760 km) across. The nucleus is near the center of the frame, but the brightest area is probably the tip of the strongest dust jet rather than the nucleus itself. Presumably, the nucleus surface lies just below this bright jet. Further analysis may allow scientists to disentangle the nucleus from its atmosphere (coma), presently its difficult to estimate the nucleus' size.

CLOSE-UP OF COMET FRAGMENTS (Top Right) This image shows pieces of the nucleus that apparently broke off and were first detected during ground-based observations on March 24. The Hubble image shows at least three separate objects that are probably made up of coarse-grained dust. Large fragments of the nucleus would not be accelerated into the tail, which appears to be the case in this image.

The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Space Flight Center for NASA's Office of Space Science.

This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/.

Voir l'image PIA01290: Hubble Probes Inner Region of Comet Hyakutake sur le site de la NASA.

| | PIA01290: Hubble Probes Inner Region of Comet Hyakutake