PIA02684.jpg =

PIA02684: Dust Slides


Context image for PIA02684
Dust Slides

These dust avalanches occur in a crater within Iani Chaos.

Image information: VIS instrument. Latitude -0.7N, Longitude 35.8E. 18 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA02684: Dust Slides sur le site de la NASA.
| | PIA02684: Dust Slides PIA03763.jpg =

PIA03763: Olympus Mons Lava Flows


(Released 05 April 2002)
Olympus Mons stands 26 km above the surrounding plains, which is three times taller than Mt. Everest, and is the tallest volcano in the solar system. Olympus Mons is also wider (585 km) than the state of Arizona. Although these are impressive dimensions an astronaut would find walking these slopes easy, as they are typically only 2 to 5 degrees. This image contains numerous lava flows, leveed lava channels, a discontinuous sinuous rille (thought to be a collapsed lava tube) and lava plains. Close examination of the sinuous rille reveals that portions of the roof of the lava tube have not completely collapsed. All of these features can be seen in basaltic (iron and magnesium rich black rock) volcanic regions on Earth like Hawaii and Iceland. Impact craters are scarce, indicating a relatively young age (several hundred million years old) for these surfaces.

Voir l'image PIA03763: Olympus Mons Lava Flows sur le site de la NASA.
| | PIA03763: Olympus Mons Lava Flows PIA03806.jpg =

PIA03806: Mars Surface Layers in Infrared

Infrared imaging from NASA's Mars Odyssey spacecraft shows signs of layering exposed at the surface in a region of Mars called Terra Meridiani.

The brightness levels show daytime surface temperatures, which range from about minus 20 degrees to zero degrees Celsius (minus 4 degrees to 32 degrees Fahrenheit). Many of the temperature variations are due to slope effects, with sun-facing slopes warmer than shaded slopes. However, several rock layers can be seen to have distinctly different temperatures, indicating that physical properties vary from layer to layer. These differences suggest that the environment on this part of Mars varied through time as these layers were formed.

The image is a mosaic combining four exposures taken by the thermal emission imaging system aboard Odyssey during the first two months of the Odyssey mapping mission, which began in February 2002. The area shown is about 120 kilometers (75 miles) across, at approximately 358 degrees east (2 degrees west) longitude and 3 degrees north latitude.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The thermal emission imaging system was provided by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. Lockheed Martin Astronautics, Denver, is the prime contractor for the project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and JPL. JPL is a division of the California Institute of Technology in Pasadena.

Voir l'image PIA03806: Mars Surface Layers in Infrared sur le site de la NASA.

| | PIA03806: Mars Surface Layers in Infrared PIA02299.jpg =

PIA02299: Lava Flows


Context image for PIA02299
Lava Flows

These lava flows are part of the Arsia Mons complex.

Image information: VIS instrument. Latitude -18.2N, Longitude 235.6E. 17 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA02299: Lava Flows sur le site de la NASA.
| | PIA02299: Lava Flows PIA03581.jpg =

PIA03581: Polar Layers


Context image for PIA03581
Polar Layers

This image shows just one example of the bright and dark markings that appear during summer time. The marks are related to the polar layers. If you happen to see a wild-eyed guy sticking his tongue out at you, you'll know why this image qualifies for the old "art" category of THEMIS releases.

Image information: VIS instrument. Latitude 80.6S, Longitude 34.1E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03581: Polar Layers sur le site de la NASA.
| | PIA03581: Polar Layers PIA03647.jpg =

PIA03647: Ascraeus Mons


Context image for PIA03647
Ascraeus Mons

This image shows part of the flank and margin of Ascraeus Mons.

Image information: VIS instrument. Latitude 9.1N, Longitude 257.1E. 18 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03647: Ascraeus Mons sur le site de la NASA.
| | PIA03647: Ascraeus Mons PIA03764.jpg =

PIA03764: Gorgonum Chaos


(Released 08 April 2002)
This image shows the cratered highlands of Terra Sirenum in the southern hemisphere. Near the center of the image running from left to right one can see long parallel to semi-parallel fractures or troughs called graben. Mars Global Surveyor initially discovered gullies on the south-facing wall of these fractures. This image is located at 38°S, 174°W (186°E).

Voir l'image PIA03764: Gorgonum Chaos sur le site de la NASA.
| | PIA03764: Gorgonum Chaos PIA02683.jpg =

PIA02683: Tholus Summit


Context image for PIA02683
Tholus Summit

This image shows the summit of Hecates Tholus. The summit caldera is located in the top of the image.

Image information: VIS instrument. Latitude 31.6N, Longitude 150.0E. 19 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA02683: Tholus Summit sur le site de la NASA.
| | PIA02683: Tholus Summit PIA01326.jpg =

PIA01326: Radial Grooves


Context image for PIA01326
Radial Grooves

The surface of the ejecta surrounding this crater is scored with fine radial grooves. The grooves were formed during the impact event.

Image information: VIS instrument. Latitude 34.8N, Longitude 102.4E. 19 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA01326: Radial Grooves sur le site de la NASA.
| | PIA01326: Radial Grooves PIA01328.jpg =

PIA01328: Eumenides Dorsum


Context image for PIA01328
Eumenides Dorsum

In this image the action of the wind is forming yardangs. The top layer of material is being removed by the wind, revealing an older surface below -- like the crater at the bottom of the frame.

Image information: VIS instrument. Latitude 11.2N, Longitude 199.4E. 18 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA01328: Eumenides Dorsum sur le site de la NASA.
| | PIA01328: Eumenides Dorsum PIA03282.jpg =

PIA03282: Tharsis Tholus


Context image for PIA03282
Tharsis Tholus

The eastern margin of Tharsis Tholus is visible on the left side of this image.

Image information: VIS instrument. Latitude 12.8N, Longitude 270.3E. 18 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03282: Tharsis Tholus sur le site de la NASA.
| | PIA03282: Tharsis Tholus PIA03632.jpg =

PIA03632: Spallanzani Cr. Floor


Context image for PIA03632
Spallanzani Cr. Floor

This image was taken by one of the Mars Student Imaging Project (MSIP) teams. Their target is the unusual floor deposits in Spallanzani Crater. The wind may have affected the surface of the layered deposit. Small dunes have formed near the southern margin.

Image information: VIS instrument. Latitude 57.9S, Longitude 86.5E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03632: Spallanzani Cr. Floor sur le site de la NASA.
| | PIA03632: Spallanzani Cr. Floor PIA03285.jpg =

PIA03285: Ganges Features


Context image for PIA03285
Ganges Features

This image shows part of Ganges Chasma. Several landslides occur at the top of the image, while dunes and canyon floor deposits are visible at the bottom of the image.

Image information: VIS instrument. Latitude -6.8N, Longitude 312.2E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03285: Ganges Features sur le site de la NASA.
| | PIA03285: Ganges Features PIA03635.jpg =

PIA03635: Dark and Bright


Context image for PIA03635
Dark and Bright

This image of the polar region illustrates the effect of the sun on polar frost. The highstanding ridges have lost all their frost cover, while the lows shaded by the ridges still have a bright frost cover.

Image information: VIS instrument. Latitude 77.7S, Longitude 326.5E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03635: Dark and Bright sur le site de la NASA.
| | PIA03635: Dark and Bright PIA03192.jpg =

PIA03192: Holden Crater Dunes


Context image for PIA03192
Holden Crater Dunes

These dunes occur on the floor of Holden Crater.

Image information: VIS instrument. Latitude 25.8S, Longitude 326.5E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03192: Holden Crater Dunes sur le site de la NASA.
| | PIA03192: Holden Crater Dunes PIA02297.jpg =

PIA02297: Graben


Context image for PIA02297
Graben

The linear features in this image are called graben and are formed when two parallel faults have a downdropped block of material between them. These graben are located between Syria Planum and Claritas Rupes.

Image information: VIS instrument. Latitude -23.0N, Longitude 259.1E. 17 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA02297: Graben sur le site de la NASA.
| | PIA02297: Graben PIA03789.jpg =

PIA03789: Cerberus Wind Streaks


(Released 6 May 2002)
The Science
Cerberus is a dark region on Mars that has shrunk down from a continuous length of about 1000 km to roughly three discontinuous spots a few 100 kms in length in less than 20 years. There are two competing processes at work in the Cerberus region that produce the bright and dark features seen in this THEMIS image. Bright dust settles out of the atmosphere, especially after global dust storms, depositing a layer just thick enough to brighten the dark surfaces. Deposition occurs preferentially in the low wind "shadow zones" within craters and downwind of crater rims, producing the bright streaks. The direction of the streaks clearly indicates that the dominant winds come from the northeast. Dust deposition would completely blot out the dark areas if it were not for the action of wind-blown sand grains scouring the surface and lifting the dust back into the atmosphere. Again, the shadow zones are protected from the blowing sand, preserving the bright layer of dust. Also visible in this image are lava flow features extending from the flanks of the huge Elysium volcanoes to the northwest. Two shallow channels and a raised flow lobe are just barely discernable. The lava channel in the middle of the image crosses the boundary of the bright and dark surfaces without any obvious change in its morphology. This demonstrates that the bright dust layer is very thin in this location, perhaps as little as a few millimeters.

The Story
Mars is an ever-changing land of spectacular contrasts. This THEMIS image shows the Cerberus region of Mars, a dark area located near the Elysium volcanoes and fittingly named after the three-headed, dragon-tailed dog who guards the door of the underworld. Two opposing processes are at work here: a thin layer of dust falling from the atmosphere and/or dust storms creating brighter surface areas (e.g. the top left portion of this image) and dust being scoured away by the action of the Martian wind disturbing the sand grains and freeing the lighter dust to fly away once more (the darker portions of this image). There are, however, some darker areas that are somewhat shielded and protected from the wind that have yielded bright, dusty crater floors and wind streaks that trail out behind the craters. These wind streaks tell a story all their own as to the prevailing wind direction coming from the northeast. This, added to the fact that this dark region was once 1000 km in length and has dwindled to just a few isolated dark splotches of 100 kilometers in the past 20 years, help us to see that the Martian environment is still quite dynamic and capable of changing. Finally, this being a volcanic region, a lobe of a lava flow from the immense Elysium volcanoes to the northwest is visible stretching across the bottom one-quarter of the image.

Voir l'image PIA03789: Cerberus Wind Streaks sur le site de la NASA.
| | PIA03789: Cerberus Wind Streaks PIA03758.jpg =

PIA03758: Layered Deposits on the floor of Ganges Chasma


(Released 29 March 2002)
The Science
The Story These layered deposits are located on the floor of a large canyon called Ganges Chasma which is a part of the Valles Marineris. Dramatic layering can be seen throughout the deposit. Different styles of erosion are manifest in these different layers and at different locations within the layered material. For example, the southern portion of these deposits have a pronounced fluting, whereas in other areas the same layers are more intact. Relatively dark dunes and sand sheets can be observed surrounding the relatively brighter layered material in the upper right and lower portions of the image. Darker material also appears to mantle select areas of the layered deposits. The formation of the dunes is influenced by topography; this influence is best illustrated in the upper left of the image where a small hillock has interfered with the local wind flow. Impact craters of all sizes are noticeably absent in this image, indicating a relatively young age for this surface. This image is approximately 22 km wide and 60 km in length; north is toward the top.

The Story
If this wonderfully textured landform were on Earth, it would have to be designated as a "national park," much like the popular canyon parklands of the American Southwest. Look for the oblong plateau at the center right of this image, and see how the terrain descends from it on all sides. The southerly canyon wall (bottom third of the image) displays a visually beautiful canyon slope, with descending erosional flutes that cut pathways through the differently hued rock and mineral layers. While the northern side of the plateau might not look as dramatic, don't miss the dark-colored sand dunes that lie at the base of the canyon. Why did they form in just that place? To find out, look for the small hillock in the top left of the image that has interfered with the wind's flow, causing the ripply dunes to form. With so many interesting and physically stunning features, this spot will no doubt attract eager Mars tourists some day far in the future.

Voir l'image PIA03758: Layered Deposits on the floor of Ganges Chasma sur le site de la NASA.
| | PIA03758: Layered Deposits on the floor of Ganges Chasma PIA01293.jpg =

PIA01293: Cavi Angusti


Context image for PIA01293
Cavi Angusti

This region of plateaus near the south polar cap is called Cavi Angusti.

Image information: VIS instrument. Latitude -76.1N, Longitude 283.0E. 35 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA01293: Cavi Angusti sur le site de la NASA.
| | PIA01293: Cavi Angusti PIA01946.jpg =

PIA01946: Dissected Surface


Context image for PIA01946
Dissected Surface

The dissected surface seen in this image is near Warrego Valles.

Image information: VIS instrument. Latitude -19.1N, Longitude 244.0E. 18 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA01946: Dissected Surface sur le site de la NASA.
| | PIA01946: Dissected Surface PIA01242.jpg =

PIA01242: Sand Dunes


Context image for PIA01242
Sand Dunes

This extensive dune field in located on the floor of a large unnamed crater in Noachis Terra.

Image information: VIS instrument. Latitude -43.7N, Longitude 34.7E. 17 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA01242: Sand Dunes sur le site de la NASA.
| | PIA01242: Sand Dunes PIA03841.jpg =

PIA03841: Ismenia Fossae


(Released 2 July 2002)
This THEMIS image is in a region of Mars' northern hemisphere called Ismenia Fossae. Most of the landforms in this image are the degraded remains of impact crater rim and ejecta from an unnamed crater (75 km diameter) just north of this scene (refer to the context image). The terminus of this ejecta blanket can be seen in the lower third of the image. The hills and other topographic highs of this landscape appear to be mantled. This mantling layer has itself been modified to produce a pitted, knobby surface in places. The presence of water ice in the mantling material is a likely possibility. Also visible in this image are some small degraded craters located primarily in the upper half of this scene.


Voir l'image PIA03841: Ismenia Fossae sur le site de la NASA.
| | PIA03841: Ismenia Fossae PIA01707.jpg =

PIA01707: Northern Crater


Context image for PIA01707
Northern Crater

Many craters in the northern plains look like the one in this image -- interior filled almost to the rim, narrow and steep ejecta surrounding the rim, little or no remaining distant ejecta. It is assumed that the climate in the region has affected the appearance of these craters.

Image information: VIS instrument. Latitude 52.5N, Longitude 186.3E. 20 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA01707: Northern Crater sur le site de la NASA.
| | PIA01707: Northern Crater PIA03052.jpg =

PIA03052: Dust Devil Tracks


Context image for PIA03052
Dust Devil Tracks

These dust devil tracks are located in the region surrounding Hooke Crater.

Image information: VIS instrument. Latitude 46.6S, Longitude 316.1E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03052: Dust Devil Tracks sur le site de la NASA.
| | PIA03052: Dust Devil Tracks PIA03083.jpg =

PIA03083: Polar Layers


Context image for PIA03083
Polar Layers

This VIS image illlustrates how distinct polar layers appear with no frost cover. This image was collected during the height of summer at the south pole of Mars.

Image information: VIS instrument. Latitude 80.7S, Longitude 295.6E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03083: Polar Layers sur le site de la NASA.
| | PIA03083: Polar Layers PIA03846.jpg =

PIA03846: Huo Hsing Vallis


(Released 12 July 2002)
This image shows another example of an ancient channel in the Arabia Terra region of Mars. As with other channels observed on Mars, the geomorphology of Huo Hsing Vallis is suggestive of, and assumed to have been carved by, running water, although the fluid that flowed through these channels cannot be proven to have been water. This channel cuts through several layers of rocks. These rock layers may be sedimentary, composed of particles of other rocks that have been cemented together somehow, or they may be igneous layers, formed by the repeated eruption of lava (or some combination of sedimentary and igneous layers). The distinctive appearance of this terrain has led to its being described as "etched." Because the channel cuts through these rocks, the layered rocks must be older than the channel (see previous discussion of superposition). At the lower left side of the image, several intersecting ridges can be seen. These ridges may be inverted topography, or they may be exposed dikes, which form by linear intrusions of lava into rock underground; dikes are exposed by erosion of the overlying rock. The most recent activity in the region appears to be the formation of mega-ripples in the channel. Wind moving particles of rock forms these ripples perpendicular to the wind direction.

Voir l'image PIA03846: Huo Hsing Vallis sur le site de la NASA.

| | PIA03846: Huo Hsing Vallis PIA03084.jpg =

PIA03084: Fractured Surface


Context image for PIA03084
Fractured Surface

These fractures and graben are part of Gordii Fossae, a large region that has undergone stresses which have cracked the surface.

Image information: VIS instrument. Latitude 16.6S, Longitude 234.3E. 18 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03084: Fractured Surface sur le site de la NASA.
| | PIA03084: Fractured Surface PIA01865.jpg =

PIA01865: Wind and Lava


Context image for PIA01865
Wind and Lava

In this image wind seems to be the dominant process, but lava flows are still recognizable from the surface texture. It appears that the lava flow (top left) is relatively thin, and the material below is easily eroded by the wind.

Image information: VIS instrument. Latitude 8.5N, Longitude 233.6E. 18 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA01865: Wind and Lava sur le site de la NASA.
| | PIA01865: Wind and Lava PIA01294.jpg =

PIA01294: Melas Chasma


Context image for PIA01294
Melas Chasma

This image shows part of the floor of Melas Chasma. Layered materials and sand are common in this section of canyon.

Image information: VIS instrument. Latitude -12.2N, Longitude 287.8E. 17 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA01294: Melas Chasma sur le site de la NASA.
| | PIA01294: Melas Chasma PIA03848.jpg =

PIA03848: Ophir Planum


(Released 16 July 2002)
This is an image of a region of Mars called Ophir Planum, located at 8.4 S, 306.8 E. The Valles Marineris system of canyons that stretch for thousands of kilometers across Mars are located just to the south of the area covered by the image shown here. This image contains numerous overlapping lava flows, which can be seen in the layers of the wall rocks in Valles Marineris to the south. A number of remarkable wind streaks are also apparent throughout the image. These streaks commonly trail behind small topographic features such as craters and give an indication of the prevailing wind direction within the region. The northern half of this image is indicative of a northeast wind direction and the southern half indicates a predominance of a southeast wind direction. The variability of these winds may indicate that the local topography has some influence over the local winds.


Voir l'image PIA03848: Ophir Planum sur le site de la NASA.
| | PIA03848: Ophir Planum PIA03910.jpg =

PIA03910: Medusae Fossae


(Released 31 July 2002)
This image crosses the equator at about 155 W longitude and shows a sample of the middle member of the Medusae Fossae formation. The layers exposed in the southeast-facing scarp suggest that there is a fairly competent unit underlying the mesa in the center of the image. Dust-avalanches are apparent in the crater depression near the middle of the image. The mesa of Medusae Fossae material has the geomorphic signatures that are typical of the formation elsewhere on Mars, but the surface is probably heavily mantled with fine dust, masking the small-scale character of the unit. The close proximity of the Medusae Fossae unit to the Tharsis region may suggest that it is an ignimbrite or volcanic airfall deposit, but it's eroded character hasn't preserved the primary depositional features that would give away the secrets of formation. One of the most interesting feature in the image is the high-standing knob at the base of the scarp in the lower portion of the image. This knob or butte is high standing because it is composed of material that is not as easily eroded as the rest of the unit. There are a number of possible explanations for this feature, including volcano, inverted crater, or some localized process that caused once friable material to become cemented. Another interesting set of features are the long troughs on the slope in the lower portion of the image. The fact that the features keep the same width for the entire length suggests that these are not simple landslides.


Voir l'image PIA03910: Medusae Fossae sur le site de la NASA.
| | PIA03910: Medusae Fossae PIA01313.jpg =

PIA01313: Ceraunius Tholus


Context image for PIA01313
Ceraunius Tholus

This image shows part of the summit caldera of Ceraunius Tholus. Channels are common on the flanks of this volcano.

Image information: VIS instrument. Latitude 23.9N, Longitude 262.7E. 18 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA01313: Ceraunius Tholus sur le site de la NASA.
| | PIA01313: Ceraunius Tholus PIA03834.jpg =

PIA03834: Coprates Chasma


(Released 21 June 2002)

The Science
This image covers a portion of Coprates Chasma, located near 15.5S, 57.8W, which is part of the Valles Marineris system of canyons that stretch for thousands of kilometers. This image displays clearly the contrast between bedrock, sand, and dust surfaces. The steepest slopes, such as on the canyon walls, appear to be free of the mantle of dust and sand that is nearly ubiquitous elsewhere in the image. Layering is clearly present in the bedrock unit, but it is not clear if that layering is due to sedimentary deposits or volcanic lava flows. Superimposed on the slopes is a mantle of dust in a manner that appears similar to snow covered mountains on Earth. This is because in both situations, fine-grained dry, particulate material is settling on a sloped surface. Collecting in the valleys and, in some cases, climbing up the slopes are several sand sheets. The amount of cover and the apparent thickness of these sands give some indication to the huge volume of material that is collected here. The orientation of the slip faces of the dunes in this image can be used to deduce the prevalent wind patterns in the region. In this case, the prevalent wind direction is towards the east but there are areas where the winds indicate a more complex system, perhaps indicating topographic control of the local winds.

The Story
The canyon walls of Coprates, the old name for the Persian River Ab-I-Diz, descend clearly at the top of this image, without being obscured by the dust that covers much of this region. Coprates Chasma is part of Valles Marineris, the largest canyon system in the solar system.

In addition to the hard bedrock and dust, sand dunes also appear on the floor of the canyon. They almost look as though they've been raked by a Zen gardener, but the eastward-blowing wind is really responsible for their rows. Scientists can tell the direction of the wind by looking at the slip faces of the dunes -- that is, by identifying the steep, downward slope formed from loose, cascading sand. Some areas seem to have been formed by more complex wind patterns that may have emerged due to the topography of the area.

This region is, in fact, pretty complex. The sand in this area looks like it is thick and abundant. Not only has it collected in the valleys, it has also built up enough to begin to "climb up" the slopes. There is also layering in the bedrock, but who knows if this layering is made of deposits of "dirt" and rock or from lava. Finally, at the bottom of this image, dust-covered slopes appear like snow-covered mountain s on Earth. This similar look occurs because both dust and snow are fine-grained particles and cover the slopes in comparable ways.

Voir l'image PIA03834: Coprates Chasma sur le site de la NASA.
| | PIA03834: Coprates Chasma PIA01772.jpg =

PIA01772: Graben


Context image for PIA01772
Graben

Paired fractures with a downdropped block between them are termed graben. Graben are common on Alba Patera, where this image is located.

Image information: VIS instrument. Latitude 43.7N, Longitude 245.8E. 19 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA01772: Graben sur le site de la NASA.
| | PIA01772: Graben PIA01314.jpg =

PIA01314: Two Craters


Context image for PIA01314
Two Craters

The two craters in this image are located in Zephyria Planum. The crater floors appear to be modified only by deposits of fine materials.

Image information: VIS instrument. Latitude 0.3N, Longitude 155.5E. 18 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA01314: Two Craters sur le site de la NASA.
| | PIA01314: Two Craters PIA03833.jpg =

PIA03833: Claritas Fossae


(Released 20 June 2002)

The Science
The eastern rim of this unnamed crater in Claritas Fossae is very degraded. This indicates that this crater is very ancient and has been subjected to erosion and subsequent bombardment from other impactors such as asteroids and comets. One of these later (younger) craters is seen in the upper right of this image superimposed upon the older crater rim material. Note that this smaller younger crater rim is sharper and more intact than the older crater rim. This region is also mantled with a blanket of dust. This dust mantle causes the underlying topography to take on a more subdued appearance.
The Story
Not every crater on Mars has a name. The one in this image doesn't. What would you name it if you could?

That's what planetary scientists ask themselves when they come across such features. If they think of a good name, they can submit it for approval to a group of world astronomers who are members of the International Astronomical Union. There are special rules, though, so not any name can be selected. The selection committee especially wants to make sure that all world cultures are represented.

While this crater may not have a name, the region it lies in does. It is called Claritas Fossae. "Claritas" is the Latin word for "bright." "Fossae" are long, narrow, shallow depressions that mark the region. You can see these best in the context image to the right.

You can tell just by looking at this crater that it is very ancient. Its rim is very degraded from erosion and bombardment from other impactors such as asteroids and comets. Compare its roughened rim to the smoother outline of the small crater on the rim's edge (upper right). The smoother rim of the small one means that it is considerably younger than its older, choppier neighbor. You know it was certainly created after the large crater because it lies on top of the rim.

Other than the old and young generations of craters, the surface looks pretty uniform in hue and perhaps even a little dull. That's because a coating of dust lies over the area, masking some of the contrasts in terrain that might lie beneath.

Voir l'image PIA03833: Claritas Fossae sur le site de la NASA.
| | PIA03833: Claritas Fossae PIA03787.jpg =

PIA03787: Clouds in the Northern Tempe Terra


(Released 2 May 2002)
The Science
This THEMIS visible image shows a region in northern Tempe Terra near 48° N, 75° W (285° E). Patchy water-ice clouds cover portions of the low-lying canyon at the top (north) of this image. Further south the atmosphere is clear and the knobby or "scabby" plains that are typical of many mid-latitude regions on Mars can be seen. These plains appear to mantle and modify a pre-existing surface, burying the older cratered terrain. This mantling layer has itself been modified to produce a pitted, knobby surface. The large mesa seen in this image has unusual deposits of material that occur preferentially on the cold, north-facing slopes. These deposits are seen frequently at mid-northern and southern latitudes, and have a distinct, rounded boundary that typically occurs at approximately the same distance below the ridge crest. It has been suggested that these deposits once draped the entire surface and have since been removed from all but the north-facing slopes. The presence of water ice in these layers is a likely possibility to account for their preservation only on the colder surfaces. The south-facing slopes lack this mantling material, and show clear evidence for layering in the rock units that form the mesa.

The Story
This deep and murky-looking depression is in an area called "Tempe Terra," a lilting, alliterative name that seems almost a little too merry for this kind of terrain.

If the top of the image looks a little smudgy, that's because patchy water-ice clouds hang over the low lying canyon. Further south, where the air is clear, you can see some "scabby" plains (particularly in the high-res image, where the knobby patches of raised surface areas sort of do look like crusted-over dirt wounds). These plains cover a more ancient, cratered surface, but have been eroded away enough to form these scabby-seeming features.

The large mesa in this image has some odd deposits of material on its cold, north-facing slopes. Could these deposits have been all over the surface of Mars long ago, but then were subsequently eroded away in most places on the planet? Did water ice on the colder surfaces preserve the last vestiges of these deposits so that scientists have the advantage of studying them today?

While those answers won't be clear for a while, the south-facing slopes don't have this piled on material. That makes it easier to see the rock layers in the mesa. Layers are important to study, because they tell what has happened to the planet geologically over its history. The bottom layers are usually the oldest (unless some geologic force has pushed them up), so looking at each layer can give an idea of what happened first and last . . . and maybe even how long each period of time lasted.

Voir l'image PIA03787: Clouds in the Northern Tempe Terra sur le site de la NASA.
| | PIA03787: Clouds in the Northern Tempe Terra PIA03756.jpg =

PIA03756: Nirgal Vallis (Released 27 March 2002)


This THEMIS image shows a sinuous valley network channel with sharp bends cutting across the cratered highlands of the southern hemisphere of Mars. The channel is named Nirgal Vallis, which is from the Babylonian word for "Mars." Nirgal Vallis is a channel with a total length of approximately 500 km. It is approximately 6 km wide in this region. Gullies and alluvial deposits discovered by Mars Global Surveyor are clearly visible on the polar-facing (south) wall and floor of Nirgal Vallis. These gullies appear to emanate from a specific layer in the walls. There is a pronounced sparsity of gullies on the equator-ward facing slopes. The gullies have been proposed to have formed by the subsurface release of water. Patches of dunes are also seen on the channel floor, notably along the edges of the channel floor near the canyon walls. There is still debate within the scientific community as to how valley networks themselves form: surface runoff (rainfall/snowmelt) or headward erosion via groundwater sapping. This image is approximately 22 km wide and 60 km in length; north is toward the top.

Voir l'image PIA03756: Nirgal Vallis (Released 27 March 2002) sur le site de la NASA.
| | PIA03756: Nirgal Vallis (Released 27 March 2002) PIA01948.jpg =

PIA01948: Polar Crater


Context image for PIA01948
Polar Crater

This image shows half of a crater on the polar cap.

Image information: VIS instrument. Latitude -78.2N, Longitude 188.2E. 17 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA01948: Polar Crater sur le site de la NASA.
| | PIA01948: Polar Crater PIA02032.jpg =

PIA02032: Crater Floor


Context image for PIA02032
Crater Floor

This crater and its interesting floor features is located south of Meridiani Terra.

Image information: VIS instrument. Latitude -5.1N, Longitude 354.8E. 18 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA02032: Crater Floor sur le site de la NASA.
| | PIA02032: Crater Floor PIA03481.jpg =

PIA03481: Acheron Fossae in Visible Light

This visible-light image, taken by the thermal emission imaging system's camera on NASA's 2001 Mars Odyssey spacecraft, shows the highly fractured, faulted and deformed Acheron Fossae region of Mars. The scarps visible in this image are approximately one kilometer (3,300 feet) high, based on topography derived from the laser altimeter instrument on Mars Global Surveyor.

Dark streaks only 50 meters (164 feet) across can be seen on some of the cliff faces. These streaks may be formed when the pervasive dust mantle covering this region gives way on steep slopes to create dust avalanches.

The image also shows impact craters as small as 500 meters (1,640 feet) in diameter, as well as smooth and textured plains.

Acheron Fossae is located 1,050 kilometers (650 miles) north of the large shield volcano Olympus Mons. This image covers an area about 18 by 9 kilometers (11 by 6 miles) centered at 37 degrees north, 131 degrees west. North is to the top of this image, which was acquired on February 19,2002, at about 3:15 p.m. local Martian time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The thermal emission imaging system was provided by Arizona State University, Tempe. Lockheed Martin Astronautics, Denver, is the prime contractor for the project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

Voir l'image PIA03481: Acheron Fossae in Visible Light sur le site de la NASA.

| | PIA03481: Acheron Fossae in Visible Light PIA03822.jpg =

PIA03822: Huo Hsing Vallis


(Released 5 June 2002)

The Science
A portion of an ancient channel called the Huo Hsing Vallis seen in the center of this image. As with all channel forms on Mars, it was carved by some moving fluid but that fluid can not automatically be assumed to be water. Lava and even wind can sculpt channel forms that mimic those of flowing water. In this case, the presence of pronounced oxbow bends in the channel favors the conclusion that water was the fluid. It is interesting that the ripple-like ridges on the channel floor mimic current ripples found in many streams on Earth. But the fluid responsible for their formation likely is the wind. Similar ripples occur in many places on Mars that have no relationship to channels. Surrounding the channel is an intensely eroded landscape known as etched terrain. The many layers that were deposited in the past are now being eroded away by the wind. In the process, unusual polygonal ridges are being exposed, the most prominent of which appear just north of the oxbow bends. The mechanism by with they form is poorly understood. It is possible that they began as polygonal troughs similar in form and origin as those that form in permafrost regions on Earth like the Canadian Arctic. If the troughs were subsequently filled in by sediment that solidified into a more resistant deposit than the surrounding material, later erosion would leave behind ridges in place of the former troughs. Known as inverted topography, there are examples of this type of landform in other etched terrains on Mars.


The Story

For thousands of years, many cultures the world over have studied the planets, first by observing their motions in the night sky, later through telescopes, and today through up-close observation enabled by spacecraft. Many places on Mars are given names that honor the long history of contributions by all peoples to Mars exploration. Huo Hsing, the Chinese word for the planet Mars, is the namesake of the ancient channel shown above.

As with all channel forms on Mars, it was carved by a moving fluid. Sometimes the moving fluid that created the channels can be identified as water, sometimes as lava, and sometimes as something else entirely. Even the wind can carve out the terrain in grooves. So, how can you tell what force split the smoothness of the land? In this case, check out the tight, meandering loops called oxbow bends. This pattern suggests that water was the mysterious fluid. We frequently see such bends in rivers and floodplains on Earth.

At the bottom of the empty channel, you can see rippling ridges. This undulating terrain is a dry mimic of the waves that once rippled on currents down the channel, but it wasn't water that shaped these landforms. They were created by the wind and occur not only in Martian channels, but all over the windswept red planet.

Wind erosion is a geologist's friend, because it can uncover a planet's deeper secrets. What you can see all around the deeper channels is a terrain that seems almost "flaky" in appearance. It's known as etched terrain and is created by the wind as it scours the planet again and again over the years, unevenly eroding the surface. The coolest thing in this image is that the wind has eroded enough material just north of the oxbow bends to reveal a crackly-patterned surface known as polygonal ridges.

Why is that so interesting? While no one knows exactly how they formed, it's possible that they began as polygonal troughs similar to those that form in permafrost regions on Earth like the Canadian Arctic. At least on Earth, the formation of these polygons are directly linked to the repeated thawing and freezing of water and the stresses that puts on the surface. That gives scientists a further indication that water could have been more than an occasional force in molding this region. Whether water was the original culprit or not, it's wind that has taken over.

You'll notice that while these "crackly features" may have begun as troughs, their polygonal edges sure seem like they're slightly raised above the surrounding terrain. And they are! It's possible that the former troughs were filled in at some point by a strong, erosion-resistant deposit that eventually solidified over time. As the wind continued to shave away the surrounding terrain, ridges were left behind. These ridges are known as inverted topography, and occur in many etched terrains on Mars.

Voir l'image PIA03822: Huo Hsing Vallis sur le site de la NASA.
| | PIA03822: Huo Hsing Vallis PIA03796.jpg =

PIA03796: Utopia Planitia


(Released 15 May 2002)
The Science
This image is located in Utopia Planitia, a large plain in the northern hemisphere. It is believed that this basin is the result of a large impact. On the right side of the image is a partially imaged crater with a well-preserved ejecta blanket. The morphology of the ejecta implies that the crater is young relative to the surrounding material and has not undergone extensive deposition or erosion. Surrounding the crater are polygonal troughs in the smooth surface material. This polygon pattern is relatively common in the northern plains of Mars, and are primarily located in Acidalia Planitia, Elysium Planitia, and Utopia Planitia. These troughs are believed to be small grabbens, however, scientist are currently debating the origin of these features. The two most accepted hypotheses are that these grabbens either form as volcanic material cools and contracts, or are produced as sediment shrinks as a result of compaction.

The Story
When you think of Utopia, you probably don't think of a large Martian plain, riddled with troughs and pockmarked by craters. Of course, it may actually be a more fitting name than you think. When Sir Thomas More wrote his book about a fictitiously optimal place guided and governed by reason, he made up the word utopia from Greek words meaning "nowhere."

Utopia Planitia became "somewhere" for the first time, however, when its first visitor, the Viking 2 lander, settled down and analyzed the area. And scientists today are using their own reasoning and logic to discern even more about how this northern Martian plain developed geologically.

Right now, scientists have two hypotheses for how the troughs seen here were formed. Because Utopia Planitia is a volcanic region of Mars, these rifts in the surface could have formed when volcanic material cooled and then contracted. Alternatively, this area might be made up of a lot of sediments - small particles of rock, soil, and dust deposited in the area. Just like any loose material, it could have compacted together in places or "shrunk down" to create the lowered rifts in the terrain.

The polygonal patterns of these troughs can be seen more widely in the context image to the right. On Earth, we can sometimes see this pattern occurring in the Arctic and subarctic, where permafrost creates polygonal, "frozen-soil wedges" that form an almost honeycomb pattern throughout the terrain. We know from Viking 2 pictures that it can be pretty cold in this area, as a thin layer of white ground frost was observed there during a few of the Martian winters.

The whiter, brighter material near the crater, however, isn't frost or snow, but instead the record of all of the material that was once ejected from the crater at the left-hand-side of the image. You can see by the smoothness of the crater rim and the clarity of where the ejected material landed that there hasn't been much erosion. That means this crater is fairly young.

Voir l'image PIA03796: Utopia Planitia sur le site de la NASA.
| | PIA03796: Utopia Planitia PIA03906.jpg =

PIA03906: Acidalia Planitia


(Released 25 July 2002)
The lineations seen in this THEMIS visible image occur in Acidalia Planitia, and create what is referred to as "patterned ground" or "polygonal terrain." The lineations are fissures, or cracks in the ground and are possibly evidence that there was once subsurface ice or water in the region. On Earth, similar features occur when ice or water is removed from the subsurface. The removal of material causes the ground to slump, and the surface expression of this slumping is the presence of these fissures, which tend to align themselves along common orientations, and in some cases, into polygonal shapes. There are other hypotheses, not all of which involve liquid or frozen water, regarding the formation of patterned ground. Desiccation of wet soils on Earth forms mud cracks, which are similar in appearance to the martian features, but occur on a much smaller scale. Alternatively, oriented cracks form when lava flows cool. The cracks formed by this process would be on about the same scale as those seen in this image.

The best example of polygonal terrain occurs about halfway down the image. The largest fractures, as in other places in the image, run from the lower left to the upper right of the image. In some cases, though, smaller fractures occur in other orientations, creating the polygonal terrain. Scientists have been aware of these features on the surface of Mars since the Viking era, but the THEMIS visible camera will allow scientists to map these features at higher resolution with more coverage over the high latitude regions where they are most common, perhaps giving further insight into the mechanism(s) of their formation.

Voir l'image PIA03906: Acidalia Planitia sur le site de la NASA.
| | PIA03906: Acidalia Planitia PIA03663.jpg =

PIA03663: Sabis Vallis


Context image for PIA03663
Sabis Vallis

These small channels join to become Sabis Vallis.

Image information: VIS instrument. Latitude -5.7N, Longitude 207.8E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03663: Sabis Vallis sur le site de la NASA.
| | PIA03663: Sabis Vallis PIA03901.jpg =

PIA03901: 1st Manned Lunar Landing and 1st Robotic Mars Landing Commemorative Release: Viking 1 Landing Site in Chryse Planitia - Infrared Image


(Released 20 July 2002)
The date July 20 marks two major milestones in humanity's grand push to explore the frontier of space. On this date, in 1969, the Apollo 11 lunar module Eagle landed the first men (Neil Armstrong and Edwin "Buzz" Aldrin) on another celestial body, the Moon . In 1976, seven years to the day, the robotic Viking 1 Lander made the first successful landing on the ruddy rock strewn surface of Mars . To commemorate these milestones the THEMIS Team is releasing both an IR (Infra-Red) and Visible image of the Viking 1 landing site. THEMIS is currently imaging landing sites for future robotic missions including the twin Mars Exploration Rovers set to touchdown in January 2004. All of these missions anticipate the day when, hopefully in the not too distant future, astronauts will land on the red planet. So as we reflect on our rich tradition of space exploration let us also dream and plan on a wondrous future exploring the mysterious red planet.

Viking 1 landed on a relatively smooth plain in Chryse Planitia (Plains of Gold), which is a low region of the northern hemisphere of Mars. The reported landing site is 22.48° N, 49.97° W. The landing site is marked with an X in the images. This region of Mars is dominated by plains, wrinkle ridges, and impact craters.

This one band IR (band 9 at 12.6 microns) image shows bright and dark textures, which are primarily due to differences in the abundance of rocks on the surface. The relatively cool (dark) regions during the day are rocky or indurated materials whereas fine sand and dust are warmer (bright). The brightness levels show daytime surface temperatures, which range from about minus 34 degrees to minus 22 degrees Celsius (minus 29 degrees to minus 8 degrees Fahrenheit). Many of the temperature variations are due to slope effects, with sun-facing slopes warmer than shaded slopes. The dark rings around several of the craters are due to the presence of rocky (cool) material ejected from the crater. These rocks are well below the resolution of any existing Mars camera, but THEMIS can detect the temperature variations they produce.

Daytime temperature variations are produced by a combination of topographic (solar heating) and thermophysical (thermal inertia and albedo) effects. Due to topographic heating the surface morphologies seen in THEMIS daytime IR images are similar to those seen in previous imagery and MOLA topography. Smooth, undulating, and ridged plains dominate this scene. The major thermophysical variations seen in daytime images are associated with impact craters and the wrinkle ridges. Other than these ejecta deposits and the wrinkle ridges, there is little variation in the thermophysical properties of the surface materials.


Voir l'image PIA03901: 1st Manned Lunar Landing and 1st Robotic Mars Landing Commemorative Release: Viking 1 Landing Site in Chryse Planitia - Infrared Image sur le site de la NASA.
| | PIA03901: 1st Manned Lunar Landing and 1st Robotic Mars Landing Commemorative Release: Viking 1 Landing Site in Chryse Planitia - Infrared Image PIA03664.jpg =

PIA03664: Valley Divide


Context image for PIA03664
Valley Divide

These small channels join to become Sabis Vallis.

Image information: VIS instrument. Latitude -35.3N, Longitude 159.3E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03664: Valley Divide sur le site de la NASA.
| | PIA03664: Valley Divide PIA03740.jpg =

PIA03740: Martian Dunes in Infrared

This collage of six images taken by the camera system on NASA's Mars Odyssey, shows examples of the daytime temperature patterns of martian dunes seen by the infrared camera. The dunes can be seen in this daytime image because of the temperature differences between the sunlit (warm and bright) and shadowed (cold and dark) slopes of the dunes. The temperatures in each image vary, but typically range from approximately -35 degrees Celsius (-31 degrees Fahrenheit) to -15degrees Celsius (5 degrees Fahrenheit). Each image covers an area approximately 32 by 32 kilometers (20 by 20 miles) and was acquired using the infrared Band 9, centered at 12.6 micrometers. Clockwise from the upper left, these images are: (a) Russel crater, 54 degrees south latitude, 13 degrees east longitude; (b) Kaiser crater. 45degrees south latitude, 19 degrees east longitude; (c) Rabe crater, 43south latitude, 35 east longitude; (d) 22 north latitude, 66 degrees east longitude; (e) Proctor crater. 47 degrees south latitude, 30 degrees east longitude; (f) 61 degrees south latitude, 201 degrees east longitude.

The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the 2001 Mars Odyssey mission for NASA's Office of Space Science in Washington, D.C. Investigators at Arizona State University in Tempe, the University of Arizona in Tucson and NASA's Johnson Space Center, Houston, operate the science instruments. Additional science partners are located at the Russian Aviation and Space Agency and at Los Alamos National Laboratories, New Mexico. Lockheed Martin Astronautics, Denver, is the prime contractor for the project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL.

Voir l'image PIA03740: Martian Dunes in Infrared sur le site de la NASA.

| | PIA03740: Martian Dunes in Infrared PIA03825.jpg =

PIA03825: Streamlined Islands in Ares Valles


(Released 10 June 2002)

The Science
Although liquid water is not stable on the surface of Mars today, there is substantial geologic evidence that large quantities of water once flowed across the surface in the distant past. Streamlined islands, shown here, are one piece of evidence for this ancient water. The tremendous force of moving water, possibly from a catastrophic flood, carved these teardrop-shaped islands within a much larger channel called Ares Valles. The orientation of the islands can be used as an indicator of the direction the water flowed. The islands have a blunt end that is usually associated with an obstacle, commonly an impact crater. The crater is resistant to erosion and creates a geologic barrier around which the water must flow. As the water flows past the obstacle, its erosive power is directed outward, leaving the area in the lee of the obstacle relatively uneroded. However, some scientists have also argued that the area in the lee of the obstacle might be a depositional zone, where material is dropped out of the water as it briefly slows. The ridges observed on the high-standing terrain in the leeward parts of the islands may be benches carved into the rock that mark the height of the water at various times during the flood, or they might be indicative of layering in the leeward rock. As the water makes its way downstream, the interference of the water flow by the obstacle is reduced, and the water that was diverted around the obstacle rejoins itself at the narrow end of the island. Therefore, the direction of the water flow is parallel to the orientation of the island, and the narrow end of the island points downstream. In addition to the streamlined islands, the channel floor exhibits fluting that is also suggestive of flowing water. The flutes (also known as longitudinal grooves) are also parallel to the direction of flow, indicating that the water flow was turbulent and probably quite fast, which is consistent with the hypothesized catastrophic floods that came through Ares Valles.


The Story

In symbolism only, these guppy-shaped islands and current-like flutes of land beside them may conjure up a mental image of a flowing Martian river. This picture would only be half-right. Scientifically, no fish ever swam this channel, but these landforms do reveal that catastrophic floods of rushing water probably patterned the land in just this way.

Geologists who study flood areas believe that a tremendous force of moving water probably carved both the islands and the small, parallel, "current-like" ridges around them. The blunt end of the islands (the "heads" of the "fish") are probably ancient impact craters that posed obstacles to the water as it rushed down the channel in torrents. Because a crater is resistant to erosion, it creates a geologic barrier around which the water must flow.

As the water makes its way downstream, the crater's interference with the water flow is reduced, so the water that was diverted around the obstacle rejoins at the narrow end of the island (the "tail" of the "fish"). Therefore, from this information, you can tell that the water flowed from the southeast to the northwest. As a rule of thumb for the future, you can say that the narrow end of the island points downstream.

The result may be the island behind the crater, but geologists disagree about the exact process by which the island forms. Some scientists argue that the erosive power of the water is directed outward, leaving the area behind, or in the lee of, the obstacle relatively untouched. Other scientists argue that the water slows when it encounters the crater obstacle, and small particles of sand and "dirt" drop out of the water and are deposited in the lee. There's another small associated uncertainty too. Look closely at the edges of the islands and notice how the land is terraced. These ledges might mark the height of the water at various times during the flood . . . or they might be an indication that layering occurred. It all depends on your hypothesis.

Like the streamlined islands, the current-like flutes are parallel to the direction of flow, indicating that the water flow was turbulent and probably quite fast, which is consistent with the hypothesis that catastrophic floods broke forth in this region, known as Ares Vallis.

Ares Vallis is the region where Pathfinder landed to help understand the possible history of water on Mars. Geologists want to understand not only if there was a catastrophic flood, but why it happened. Both orbiters and landers can add to the information on hand, but some Earth examples might provide clues as well. On our planet, some glacial valleys have had major catastrophic floods that were caused by the sudden outburst and drainage of glacial lakes. The Channeled Scabland in Washington state is great Earthly example of a place where the sudden failure of a glacier ice dam spewed out water, leaving a system of large, dry channels with flutes similar to the ones seen in this image. Did something similar happen to cause this outburst on Mars? Hopefully, future studies of THEMIS and other images will help us understand the answer.

Voir l'image PIA03825: Streamlined Islands in Ares Valles sur le site de la NASA.
| | PIA03825: Streamlined Islands in Ares Valles PIA03791.jpg =

PIA03791: Dust Devil Tracks


(Released 8 May 2002)
The Science
This image, centered near 50.0 S and 17.7 W displays dust devil tracks on the surface. Most of the lighter portions of the image likely have a thin veneer of dust settled on the surface. As a dust devil passes over the surface, it acts as a vacuum and picks up the dust, leaving the darker substrate exposed. In this image there is a general trend of many of the tracks running from east to west or west to east, indicating the general wind direction. There is often no general trend present in dust devil tracks seen in other images. The track patterns are quite ephemeral and can completely change or even disappear over the course of a few months. Dust devils are one of the mechanisms that Mars uses to constantly pump dust into the ubiquitously dusty atmosphere. This atmospheric dust is one of the main driving forces of the present Martian climate.

The Story
Vrrrrooooooooom. Think of a tornado, the cartoon Tasmanian devil, or any number of vacuum commercials that powerfully suck up swirls of dust and dirt. That's pretty much what it's like on the surface of Mars a lot of the time. Whirlpools of wind called

Voir l'image PIA03791: Dust Devil Tracks sur le site de la NASA.
| | PIA03791: Dust Devil Tracks PIA02172.jpg =

PIA02172: Memnonia Sulci


Context image for PIA02172
Memnonia Sulci

These yardangs are being formed by wind erosion of the Memnonia Sulci deposits.

Image information: VIS instrument. Latitude -7.4N, Longitude 187.9E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA02172: Memnonia Sulci sur le site de la NASA.
| | PIA02172: Memnonia Sulci PIA01874.jpg =

PIA01874: Gullied Crater


Context image for PIA01874
Gullied Crater

Gullies occur on the rim of this northern plains crater.

Image information: VIS instrument. Latitude 63.7N, Longitude 291.6E. 20 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA01874: Gullied Crater sur le site de la NASA.
| | PIA01874: Gullied Crater PIA02894.jpg =

PIA02894: Landslide Run-Out

Ages ago, a giant earthquake shook the walls of Valles Marineris, the "Grand Canyon of Mars," and triggered a catastrophic landslide that crashed down 15,000 feet. Diving into the canyon on a simulated aerial flight, viewers fly over this billion-ton rockslide that extends for nearly a hundred miles.

This scene comes from "Flight Through Mariner Valley," an exciting video produced for NASA by the Jet Propulsion Laboratory. The video takes viewers on a simulated flight into Valles Marineris, where they explore its scenic wonders as their imaginary scout ship dives low over landslides and races through winding canyons.

The video features high-resolution images from Arizona State University's Thermal Emission Imaging System multi-band camera on NASA's Mars Odyssey. The images, which show details as small as 300 meters (1,000 feet) across, were taken at infrared wavelengths during the Martian daytime. Scientists joined hundreds of individual frames from the camera into a giant mosaic, then colored the mosaic to approximate how Mars would appear to the human eye.

To give the mosaic depth and height, moviemakers fitted it to a computerized topographic model for Valles Marineris. This was developed using hundreds of thousands of altitude measurements by the Mars Orbiter Laser Altimeter, an instrument on NASA's Mars Global Surveyor spacecraft.



Voir l'image PIA02894: Landslide Run-Out sur le site de la NASA.
| | PIA02894: Landslide Run-Out PIA03616.jpg =

PIA03616: Partway to 'Victoria'

This image shows the route that NASA's Mars Exploration Rover Opportunity had driven through its 659th Martian day, or sol, (Dec. 1, 2005) relative to the potential destination of "Victoria Crater" farther south. The base image is a portion of a mosaic (previously released as PIA07506) combining images from the Mars Observer Camera on NASA's Mars Global Surveyor orbiter, the Thermal Emission Imaging System on NASA's Mars Odyssey orbiter, and Opportunity's own Descent Image Motion Estimation System. The scale bar at lower right is 800 meters (one-half mile).



Voir l'image PIA03616: Partway to 'Victoria' sur le site de la NASA.
| | PIA03616: Partway to 'Victoria' PIA02893.jpg =

PIA02893: High View of Melas

Soaring high above Valles Marineris, the "Grand Canyon of Mars," viewers look down and catch a sight resembling parts of the desert West of the United States, but on a vastly greater scale. Here the canyon averages over a hundred miles wide, and its floor is heaped with rocks, sediments, and landslide debris. Within the canyon walls lie possibly hundreds of layers filling many pages of Mars' geologic record.

This scene comes from "Flight Through Mariner Valley," an exciting video produced for NASA by the Jet Propulsion Laboratory. The video takes viewers on a simulated flight into Valles Marineris, where they explore its scenic wonders as their imaginary scout ship dives low over landslides and races through winding canyons.

The video features high-resolution images from Arizona State University's Thermal Emission Imaging System multi-band camera on NASA's Mars Odyssey. The images, which show details as small as 300 meters (1,000 feet) across, were taken at infrared wavelengths during the Martian daytime. Scientists joined hundreds of individual frames from the camera into a giant mosaic, then colored the mosaic to approximate how Mars would appear to the human eye.

To give the mosaic depth and height, moviemakers fitted it to a computerized topographic model for Valles Marineris. This was developed using hundreds of thousands of altitude measurements by the Mars Orbiter Laser Altimeter, an instrument on NASA's Mars Global Surveyor spacecraft.



Voir l'image PIA02893: High View of Melas sur le site de la NASA.
| | PIA02893: High View of Melas PIA03798.jpg =

PIA03798: Hadriaca Patera


(Released 17 May 2002)
The Science
Although the largest volcanoes on Mars (and the solar system) are located in the geologically young Tharsis region, there are many other martian volcanoes that display equally interesting features, such as Hadriaca Patera, shown in this image. Hadriaca Patera is located to the northeast of the Hellas Planitia impact basin in the southern hemisphere. Unlike the Tharsis volcanoes, Hadriaca Patera has very low relief, standing only about 1-2 km above the surrounding plains. Many scientists believe that Hadriaca Patera and other patera volcanoes (e.g., Tyrrhena) had significant interaction with subsurface water that produced mostly explosive ash deposits (pyroclastic flows), rather than just lava flows. Nearby sources of water might have included Dao Vallis on the southern flank of the volcano. The upper portion of this image shows relatively smooth terrain located in the central caldera, which has been nearly filled in with late-stage lava flows. The lower half of the image shows lobate flows as well as furrows in the ash deposits that make up the volcano's southern flank; these erosional furrows may have formed by surface runoff or sapping by groundwater. Just below the center of the image, a few small sinuous troughs are visible, and may be collapsed lava tubes or collapse features related to subsurface water. The number of impact craters on a planetary surface is commonly used as a proxy for the age of the surface -- an old surface has had time to accumulate more craters than a young surface. The relatively small number of large craters in the image indicates that the surface in this area is younger than the nearby heavily cratered ancient terrains outside the Hellas basin, but there are more craters on this surface than would be found on the average volcanic surface in Tharsis (there are some very large old craters on the volcano's flank to the southeast of this image). Paterae in general are older than the Tharsis volcanoes. At the far right edge of the central portion of the image, an ovoid-shaped crater is visible. Such craters are believed to form by extremely low-angle impact events.

The Story
If you look at the context image to the right, you'll see a large round circle. That's the ancient mouth of the volcano, not a crater. This volcano is named Hadriaca Patera. Even though Mars is known as the home of the largest volcanoes in the solar system, this mile-high volcano isn't very tall compared to its cousins in a region of Mars called Tharsis.

As a result, you might think that paterae volcanoes like this one are relatively undistinguished as Martian volcanoes go, but it turns out they are probably much older. The number of craters on the surface in the area tells us so. Older surfaces have had time to accumulate many more craters. Not all craters, however, are almost perfectly round. Look for the egg-shaped crater (far right edge of the central portion of the image). Crater shapes like this one are caused when an impacting body comes in toward the surface at an extremely low angle.

More than being older, paterae volcanoes are really interesting to scientists because they may have interacted with subsurface water. With that "ingredient," these volcanoes spat out explosive ash deposits instead of just lava flows. Mars may look calm now, but wow! It sure wasn't in the past.

There are many signs of the volcano's past activity. In the upper portion of the image, the mouth of the volcano has been filled in with late-stage lava flows. Down below, a layering of flows is further scored with erosional furrows formed either by surface runoff or when groundwater eroded the surface from underneath, causing it to sink. Near the center of the image, collapsed lava tubes (or other collapse features related to subsurface water) texture the surface as well.

Voir l'image PIA03798: Hadriaca Patera sur le site de la NASA.
| | PIA03798: Hadriaca Patera PIA03908.jpg =

PIA03908: Yardangs in Medusa Fossae


(Released 29 July 2002)
This THEMIS visible image covers a portion of the Medusa Fossae formation, near the equator of Mars. The most characteristic feature of the Medusa Fossae formation is the abundance of "yardangs," which are erosional landforms carved by the wind. These features usually form in a linear fashion, and can be indicators of prevailing paleowind directions. On Earth, yardangs are typically found in rocks that are easily eroded, such as those that form from consolidated volcanic ash, dust-fall deposits or lake sediments.

In this particular area of Medusa Fossae, the size, spacing, and orientation of the yardangs varies throughout the image. The largest form a stripe across the center of the image, while the smallest are found in the top half of the image (look closely). The small yardangs at the very top of the image are oriented NW-SE; however, the orientation changes to NE-SW near the bright ridge in the center of the image. The variation in size and orientation appears to correspond with topographic layers, and may be due either to differences in consolidation or changes in wind strength or direction as the yardangs were formed. Finally, the terrain in the lower third of the image appears etched or pitted, and was probably also formed by wind erosion.

Voir l'image PIA03908: Yardangs in Medusa Fossae sur le site de la NASA.

| | PIA03908: Yardangs in Medusa Fossae PIA03092.jpg =

PIA03092: Southern Spots


Context image for PIA03092
Southern Spots

This VIS image of the south polar region was collected during the summer season. The markings of the pole are very diverse and easy to see after the winter frost has been removed.

Image information: VIS instrument. Latitude 79.7S, Longitude 56.6E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03092: Southern Spots sur le site de la NASA.
| | PIA03092: Southern Spots PIA02175.jpg =

PIA02175: Surface Variety


Context image for PIA02175
Surface Variety

This image of part of Aram Chaos shows two different surface textures with distinctly different brightnesses. The lighter layer appears to be on top (therefore younger) than the darker surface.

Image information: VIS instrument. Latitude 2.1N, Longitude 338.7E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA02175: Surface Variety sur le site de la NASA.
| | PIA02175: Surface Variety PIA01873.jpg =

PIA01873: Kasei Landslide


Context image for PIA01873
Kasei Landslide

This landslide was formed when part of the channel wall collapsed. This image shows part of Kasei Vallis.

Image information: VIS instrument. Latitude 27.9N, Longitude 303.6E. 19 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA01873: Kasei Landslide sur le site de la NASA.
| | PIA01873: Kasei Landslide PIA03819.jpg =

PIA03819: Lava Flows in Eastern Tharsis


(Released 31 May 2002)
This image may at first appear somewhat bland -- there is little contrast in the surface materials due to dust cover, and there are few impact craters -- but there are some very interesting geologic features here. The great Tharsis volcanoes have produced vast fields of lava flows, such as those shown in this image, to the east of Tharsis Tholus. The flows in this image have moved from west to east, down the regional topographic slope. The lobate edges of the flows are distinctive, and permit the discrimination of many overlapping individual flows that may represent tens, hundreds, thousands, or even millions of years worth of volcanic activity (overlapping relationships are especially evident at the bottom of the image). Viewed at full resolution, the image reveals interesting patterns and textures on the top surfaces of these flows. In particular, at the top of the image, there are numerous parallel curved ridges visible on the upper surfaces of the lava flows. These ridges make the flow surface look somewhat ropy, and at smaller scales this flow might be referred to as pahoehoe, indicative of a relatively fluid type of lava flow. At the scales observed here, however, these features are probably better referred to as pressure ridges. Pressure ridges form on the surface of a lava flow when the upper part of the flow is exposed to air, freezing it, but the insulated unfrozen interior of the flow continues to move down slope (and more material is pushed forward from behind), causing the surface to compress and pile up like a rug. Rough-looking flows with less distinct (more random) patterns on their surfaces may be flows that are more like terrestrial a'a flows, which are distinguished from pahoehoe flows by their higher viscosities and effusion rates. Near the center of the image there is an east-west trending, smooth-floored depression. The somewhat continuous width of this depression suggests that it is not simply formed by the edges of two higher-standing flows on either side; rather it may be a leveed channel created by more fluid lava flows. Faint east-west trending linear to arcuate features in the lower third of the image separate rougher and smoother surfaces, and may be fractures that guided or were barriers to later flows.

Voir l'image PIA03819: Lava Flows in Eastern Tharsis sur le site de la NASA.
| | PIA03819: Lava Flows in Eastern Tharsis PIA03658.jpg =

PIA03658: Lava Flows


Context image for PIA03658
Lava Flows

These relatively young lava flows are part of Arsia Mons.

Image information: VIS instrument. Latitude -22.5N, Longitude 242.3E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03658: Lava Flows sur le site de la NASA.
| | PIA03658: Lava Flows PIA03599.jpg =

PIA03599: Polar Variety


Context image for PIA03599
Polar Variety

This VIS image of the south polar region contains a variety of features including mesas, craters, surfaces with different textures and a couple of windstreaks.

Image information: VIS instrument. Latitude 80.2S, Longitude 323.4E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03599: Polar Variety sur le site de la NASA.
| | PIA03599: Polar Variety PIA03548.jpg =

PIA03548: Nili Caldera


Context image for PIA03548
Nili Caldera

This image shows part of the caldera rim of Nili Patera. Dunes are located within the caldera.

Image information: VIS instrument. Latitude 8.5N, Longitude 66.8E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03548: Nili Caldera sur le site de la NASA.
| | PIA03548: Nili Caldera PIA02196.jpg =

PIA02196: Aureum Chaos


Context image for PIA02196
Aureum Chaos

This type of "broken-up" terrain is called chaos. At the bottom right corner of the image there is evidence of deposition of material.

Image information: VIS instrument. Latitude -3.6N, Longitude 333.3E. 17 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA02196: Aureum Chaos sur le site de la NASA.
| | PIA02196: Aureum Chaos PIA03293.jpg =

PIA03293: Proctor Cr. Dunes


Context image for PIA03293
Proctor Cr. Dunes

This large dune field is located on the floor of Proctor Crater.

Image information: VIS instrument. Latitude -47.4N, Longitude 30.7E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03293: Proctor Cr. Dunes sur le site de la NASA.
| | PIA03293: Proctor Cr. Dunes PIA03597.jpg =

PIA03597: Polar Lines


Context image for PIA03597
Polar Lines

This linear features near the South Polar Cap appeared during the height of southern summer.

Image information: VIS instrument. Latitude 79.7S, Longitude 249.1E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03597: Polar Lines sur le site de la NASA.
| | PIA03597: Polar Lines PIA01213.jpg =

PIA01213: Noctis Labyrinthus


Context image for PIA01213
Noctis Labyrinthus

Sand sheets cover most of the walls and floors of this part of Noctis Labyrinthus.

Image information: VIS instrument. Latitude -5.7N, Longitude 264.3E. 18 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA01213: Noctis Labyrinthus sur le site de la NASA.
| | PIA01213: Noctis Labyrinthus PIA03810.jpg =

PIA03810: Tharsis Rise Graben


(Released 22 May 2002)
The Science
This image is located in the northwestern portion of the Tharsis Rise at about 12 N and 125 W (235 E). What is immediately noticeable in this image is the series of linear features that are called graben. These features are associated with crustal extension which results in a series of up and down blocks of crust that run perpendicular to the direction of the extension. Images of Mars have shown a large number of these tectonic features concentrated on or near the Tharsis region. The Tharsis region is an enormous bulge that causes major tectonic disruptions across the planet when it tries to settle down from its height and reach equilibrium with the rest of the planet. The graben in this image display a number of preferential directions indicating that the crustal stresses that caused the graben have changed over time. By examining the cross-cutting relationships between the features, it is possible to reassemble the history of the area.


The Story
Now, if you thought that Mars was almost perfectly round, think again! The red planet has a large bulge sticking out from it called Tharsis. Almost 3,000 miles across, this enormous region rises almost four miles above the average radius of the planet. That's quite a bulge!

Since Tharsis the land of the largest volcanoes in the solar system, it may have been formed by both the uplift of land from tectonic action and the build-up of lava flows. Tharsis can cause some pretty major tectonic disruptions across the planet when it tries to settle down from its height and reach a better equilibrium with the rest of the planet.

In this image, located in the northwestern portion of the Tharsis Rise, a whole lot of lowered features stripe the landscape. They are called grabens, and formed when the crust of the planet was stretched tectonically. This kind of crustal extension (or stretching) tends to form a series of up-and-down blocks of crust that run perpendicular to the direction of the crustal extension. And that's what we see here.

Since the streaks (or grabens) in this image aren't all perfectly aligned, that means that the crustal stresses and their directions have changed over time. And there's another history to be followed here too. Take a look at how some of the grabens cut across others. Those that cross on top of others had to have formed after the ones underneath. By looking at all of the crosscutting relationships, geologists can build up a pretty accurate record of which stresses happened first, next, and last.

On Earth, a similar series of rift valleys (grabens) formed by crustal extension too. The East African Rift System began forming almost 30 million years ago due to volcanic activity that also created most of the high peaks in East Africa, including the famous Kilimanjaro. This African peak is so high it always has snow on top of it, even though it's located right near the equator. That height might remind you of the towering Martian volcanoes in Tharsis. The East African Rift Valley System also formed over large domes that were created as hot molten material beneath the Earth's surface welled up, pushing up the crust and causing it to expand and stretch. This stretching caused the rift valleys (grabens) to appear here on our own planet.

Voir l'image PIA03810: Tharsis Rise Graben sur le site de la NASA.
| | PIA03810: Tharsis Rise Graben PIA03775.jpg =

PIA03775: A Cloudy Day on Mars


(Released 23 April 2002)
The Science
This image, centered near 49.7 N and 43.0 W (317.0 E), displays splotchy water ice clouds that obscure the surface. Most of Mars was in a relatively clear period when this image was acquired, which is why many of the other THEMIS images acquired during the same period do not have obvious signs of atmospheric dust or water ice clouds. This image is far enough north to catch the edge of the north polar hood that develops during the northern winter. This is a cap of water ice and CO2 ice clouds that form over the Martian north pole. Mars has a number of interesting atmospheric phenomena which THEMIS will be able to view in addition to water ice clouds, including dust devils, dust storms, and tracking atmospheric temperatures with the infrared camera.

The Story
Anyone who's been on an airplane in a storm knows how clouds on Earth can block the view below. The thin water ice clouds on Mars might make things slightly blurry, but at least we can still see the surface.

While the surface features may not be as clear in this image, it's actually kind of fascinating to see clouds at work, because we can get a sense of how the north pole on Mars influences the weather and the climate. In this image, the north pole is responsible for the presence of the clouds. Made of water ice and carbon dioxide, these clouds "mist out" in a atmospheric "hood" that caps the surface during the northern Martian winter, hiding it from full view of eager observers here on Earth.

Voir l'image PIA03775: A Cloudy Day on Mars sur le site de la NASA.
| | PIA03775: A Cloudy Day on Mars PIA03817.jpg =

PIA03817: Mars Surface Layers in Infrared


(Released 29 May 2002)
Infrared imaging from NASA's Mars Odyssey spacecraft shows signs of layering exposed at the surface in a region of Mars called Terra Meridiani. The brightness levels show daytime surface temperatures, which range from about minus 20 degrees to zero degrees Celsius (minus 4 degrees to 32 degrees Fahrenheit). Many of the temperature variations are due to slope effects, with sun-facing slopes warmer than shaded slopes. However, several rock layers can be seen to have distinctly different temperatures, indicating that physical properties vary from layer to layer. These differences suggest that the environment on this part of Mars varied through time as these layers were formed. The image is a mosaic combining four exposures taken by the thermal emission imaging system aboard Odyssey during the first two months of the Odyssey mapping mission, which began in February 2002. The area shown is about 120 kilometers (75 miles) across, at approximately 358 degrees east (2 degrees west) longitude and 3 degrees north latitude.

Voir l'image PIA03817: Mars Surface Layers in Infrared sur le site de la NASA.
| | PIA03817: Mars Surface Layers in Infrared PIA03772.jpg =

PIA03772: Bosporus Planum


(Released 18 April 2002)
The Science
This THEMIS image is of Bosporus Planum, located in a region of smooth plains that appear to have formed from lava flows. A crater, ~7 km in diameter, on the left edge of the image has produced an ejecta blanket that can be seen radiating from the crater. Lobes of ejecta such as those seen close to the crater rim are not formed at most typical craters and may indicate that there was a ice component in the sub-surface material when the impact occurred. A linear depression trending from the northwest to southeast along the top of the image is about 1 to 2 km wide. This may be a tectonic feature, known as a graben, that forms when a region is under stresses that are pulling it apart. There are numerous small bright dunes or ripples along the margins of the floor of this linear feature that have formed perpendicular to the sides of the graben. This pattern of ripples suggests that the wind was blowing down the graben canyon. Similar small bright dunes can be faintly seen on top of the crater ejecta along ridges (most apparent directly to the east of the crater) and along the southern margin of the interior deposits in the crater. Bright wind streaks are also apparent in this area to the west (right) of several large craters. These streaks likely formed when very small particle size materials (like dust) is deposited on the surface and then protected from removal by the wind shadow produced by the crater's rim. Shorter dark streaks, possible deposits of dark sand, have formed to the east side of the smaller craters. These streaks on opposite sides of craters may indicate that there have been different wind patterns in the area, blowing in opposite directions. Subtle ridges near the south end of the image hint that there may have been other graben that have been nearly filled in. Many of the craters in this image have a subdued, buried appearance and may have been partially filled by lava flows or mantled by dust.

A short geologic history of the area in this image can be created using the basic principles of geology, such as the principle of superposition (deposits that lie on top of other materials are younger). The linear depression must have formed after the deposition of the lava plains since it is a feature that would not have been otherwise preserved. Ejecta from the large crater has been deposited inside and over the edges of the linear depression, thus the crater must have formed after the linear depression. Finally, the bright dunes and dust streaks formed last because they have been deposited on top of all of these different features.

The Story
Splat! Take a look at the lumpy edge of the large crater half (left-hand side of the image) and compare it to the much neater rims of other craters in the region. Why is there such a difference? Scientists believe that when something hit the surface of Mars long ago, ice may have been present in the subsurface and was "regurgitated" upward into the Martian air along with dirt and rock, "splooshing" outward. When that happened, the mixed-up, ejected material created a wavering, batter-like edge that is not typical for most (ice-free) craters. More ejected material from this same impact radiates much farther out from the crater, giving it a vague, sun-like appearance.

Many of the small craters in this image appear much fainter and more subdued than the others. Their ghostly appearance may be due to a lava flow that smoothed out most of the terrain in this image, partially burying them . . . . Or???? Maybe it was a layer of dust that settled in this region to accomplish the same concealed look.

And what about that scar-like trek that cuts through the upper third of the image? It's an elongated fault created when a crust-breaking, tectonic force ripped apart the Martian terrain, leaving a long depression on the surface. This feature is called a graben, and we find them on Earth too (think of Death Valley, the lowest dry land in the United States, or the Jordan Dead Sea depression). The graben's rumpled, scar-like appearance is only enhanced by the stitchy-looking sand dunes that run down its sides. This dune pattern shows that the Martian wind probably blew down through the graben canyon to create their ruffled appearance.

The wind doesn't have its way everywhere, though. The brighter surface material on the western side of the two diagonally positioned smaller craters is probably a layer of dust that has been shielded from removal by the craters' higher rims. Dark streaks (possibly dark sand) on the opposite side of these craters reveal that the wind has been blowing to no avail in the opposite direction too.

So, think that explains everything in this image? Here's a quick geology quiz! Which features happened first? The dunes, the lava plains, the big crater, or the linear depression called a graben? To find out if you're right, check out the last paragraph in The Science caption. Hint! Whatever happened later has to be on top of whatever came before.

Voir l'image PIA03772: Bosporus Planum sur le site de la NASA.
| | PIA03772: Bosporus Planum PIA01214.jpg =

PIA01214: Ascraeus Mons


Context image for PIA01214
Ascraeus Mons

This image shows a small portion of the flank of Ascraeus Mons.

Image information: VIS instrument. Latitude 10.7N, Longitude 258.5E. 18 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA01214: Ascraeus Mons sur le site de la NASA.
| | PIA01214: Ascraeus Mons PIA03078.jpg =

PIA03078: Cone on Olympus Mons


Context image for PIA03078
Cone on Olympus Mons

This image shows just a small part of the eastern flank of Olympus Mons. On the far left side of the image a small volcanic cone can be seen. The shadow helps to identify this feature.

Image information: VIS instrument. Latitude 15.7N, Longitude 229.7E. 18 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03078: Cone on Olympus Mons sur le site de la NASA.
| | PIA03078: Cone on Olympus Mons PIA03832.jpg =

PIA03832: Galle Crater


(Released 19 June 2002)

The Science
This image is of part of Galle Crater, located at 51.9S, 29.5W. This image was taken far enough south and late enough into the southern hemisphere fall to catch observe water ice clouds partially obscuring the surface. The most striking aspect of the surface is the dissected layered unit to the left in the image. Other areas also appear to have layering, but they are either more obscured by clouds or are less well defined on the surface. The layers appear to be mostly flat lying and layer boundaries appear as topographic lines would on a map, but there are a few areas where it appears that these layers have been deformed to some level. Other areas of the image contain rugged, mountainous terrain as well as a separate pitted terrain where the surface appears to be a separate unit from the mountains and the layered terrain.

The Story
Galle Crater is officially named after a German astronomer who, in 1846, was the first to observe the planet Neptune. It is better known, however, as the "Happy Face Crater." The image above focuses on too small an area of the crater to see its beguiling grin, but you can catch the rocky line of a "half-smile" in the context image to the right (to the left of the red box).

While water ice clouds make some of the surface harder to see, nothing detracts from the fabulous layering at the center left-hand edge of the image. If you click on the above image, the scalloped layers almost look as if a giant knife has swirled through a landscape of cake frosting.

These layers, the rugged, mountains near them, and pits on the surface (upper to middle section of the image on the right-hand side) all create varying textures on the crater floor. With such different features in the same place, geologists have a lot to study to figure out what has happened in the crater since it formed.


Voir l'image PIA03832: Galle Crater sur le site de la NASA.
| | PIA03832: Galle Crater PIA01315.jpg =

PIA01315: Resistant Ridges


Context image for PIA01315
Resistant Ridges

The ridges on the floor of this crater are made of a more resistant material that their surroundings. Erosion is removing the less resistant material.

Image information: VIS instrument. Latitude -19.4N, Longitude 66.3E. 17 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA01315: Resistant Ridges sur le site de la NASA.
| | PIA01315: Resistant Ridges PIA03786.jpg =

PIA03786: Syrtis Major


(Released 1 May 2002)
The Science
This image is from the region of Syrtis Major, which is dominated by a low-relief shield volcano. This area is believed to be an area of vigorous aeolian activity with strong winds in the east-west direction. The effects of these winds are observed as relatively bright streaks across the image, extending from topographic features such as craters. The brighter surface material probably indicates a smaller relative particle size in these areas, as finer particles have a higher albedo. The bright streaks seen off of craters are believed to have formed during dust storms. A raised crater rim can cause a reduction in the wind velocity directly behind it, which results in finer particles being preferentially deposited in this location. In the top half of the image, there is a large bright streak that crosses the entire image. There is no obvious topographic obstacle, therefore it is unclear whether it was formed in the same manner as described above. This image is located northwest of Nili Patera, a large caldera in Syrtis Major. Different flows from the caldera eruptions can be recognized as raised ridges, representing the edge of a flow lobe.

The Story
In the 17th century, Holland was in its Golden Age, a time of cultural greatness and immense political and economic influence in the world. In that time, lived a inquisitive person named Christian Huygens. As a boy, he loved to draw and to figure out problems in mathematics. As a man, he used these talents to make the first detailed drawings of the Martian surface - - only 50 years or so after Galileo first turned his telescope on Mars.

Mars suddenly became something other than a small red dot in the sky. One of the drawings Huygens made was of a dark marking on the red planet's surface named Syrtis Major. Almost 350 years later, here we are with an orbiter that can show us this place in detail. Exploration lives!

It's great we can study this area up close. In earlier periods of history, scientists were fascinated with Syrtis Major because this dark region varied so much through the seasons and years. Some people thought it might be a changing sea, and others thought it might be vegetation. Early spacecraft like Mariner and Viking revealed for the first time that the changes were caused by the wind blowing dust and sand across the surface.

What we can see in this image is exactly that: evidence of a lot of wind action. Bright dust patches streak across this image, formed through wind interference from craters and other landforms. These wispy, bright streaks are spread on the surface by a vigorous, east-west wind that kicked up huge dust storms, scattering the fine particles of sand and dust in an almost etherial pattern. The bright streaks in the top part of the image might have formed in a slightly different way, because there is no landform standing in the wind's way.

Beneath the bright surface dust are raised ridges that mark the edges of earlier lava flows from Nili Patera, a Martian "caldera." A caldera is a collapsed, bowl-shaped depression at the top of a volcano cone.

Can you imagine how Christian Huygens would feel if he lived today and could see all of this knowledge unfold? Or how it would feel to be the first person to stand in this dark volcanic and cratered region, knowing how many discovers had paved the way to that moment? Yes, exploration lives!

Voir l'image PIA03786: Syrtis Major sur le site de la NASA.
| | PIA03786: Syrtis Major PIA01774.jpg =

PIA01774: Acheron Fossae


Context image for PIA01774
Acheron Fossae

This heavily dissected surface is located within the Acheron Fossae region.

Image information: VIS instrument. Latitude 34.5N, Longitude 218.9E. 19 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA01774: Acheron Fossae sur le site de la NASA.
| | PIA01774: Acheron Fossae PIA03757.jpg =

PIA03757: Gullied Craters 41°S


(Released 28 March 2002)
This scene shows gullies superposed on the inner walls of four large craters. Most of these gullies appear to emanate from one or two specific layers along the inner crater's entire circumference. The presence of gullies on the equatorward facing slopes is unusual in that most gullied inner crater walls are poleward facing. It appears that there are several distinct layers from which the gullies issue forth as well as different expressions and possibly types and or ages of gully development. Some gullies appear to originate in the uppermost layers and others in lower layers. An atmospheric haze is also visible in the poleward facing slopes of the craters. This haze is visible in the original data but has been enhanced by image processing. The small elliptical crater in the lower left contains evidence of downslope flow on the floor. The largest crater in this scene has a central peak with a pit. Note the lack of gully development on either the central peak and pit. Most craters in this region are filled and mantled (covered in dust) or "softened." This image is approximately 22 km wide and 60 km in length; north is toward the top.

Voir l'image PIA03757: Gullied Craters 41°S sur le site de la NASA.
| | PIA03757: Gullied Craters 41°S PIA01949.jpg =

PIA01949: Polar Texture


Context image for PIA01949
Polar Texture

The "holey" texture of the image of the North Polar cap is called "swiss-cheese," while the linear texture at the bottom of the frame is called "thumbprint terrain."

Image information: VIS instrument. Latitude -85.8N, Longitude 310.5E. 17 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA01949: Polar Texture sur le site de la NASA.
| | PIA01949: Polar Texture PIA01935.jpg =

PIA01935: Collapse Features


Context image for PIA01935
Collapse Features

The collapse features in this images are related to lava tubes that likely originated at Elysium volcanic complex.

Image information: VIS instrument. Latitude 20.8N, Longitude 122.5E. 1 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA01935: Collapse Features sur le site de la NASA.
| | PIA01935: Collapse Features PIA03849.jpg =

PIA03849: Spallanzani Crater


(Released 17 July 2002)
The craters on Mars display a variety of interior deposits one of which is shown here. Spallanzani Crater is located far enough south that it probably experiences the seasonal growth and retreat of the south polar cap. During the southern hemisphere winter, CO2 frost condenses out of the atmosphere onto the surface and probably brings with it small amounts of dust and even water ice. It is this sort of depositional process that is thought to have produced the polar layered deposits. The layered deposit in Spallanzani Crater shares some similarities with the polar deposits. Whatever the origin of the layered materials, they likely filled the crater at one time. Note how the interior slope of the northern rim displays layered material of similar if less distinct morphology as the main deposit on the floor. The process that filled the crater with sediment has been replaced by the opposite process. Erosion has taken over, leaving behind spectacular stair-stepped mesas and bizarre, contorted landforms. Unlike the interior crater deposits in the equatorial latitudes, the erosional process has not produced the yardang features that indicate wind erosion. It may be that ice was one of the cementing agents of the sediment and perhaps the sublimation of that ice has left the sediment susceptible to erosion. The details of the deposition and erosion of this interesting deposit remain to be discovered.


Voir l'image PIA03849: Spallanzani Crater sur le site de la NASA.
| | PIA03849: Spallanzani Crater PIA02034.jpg =

PIA02034: Cloud Tops


Context image for PIA02034
Cloud Tops

These clouds hide the south polar region. This storm occurred during late summer.

Image information: VIS instrument. Latitude -76.4N, Longitude 230.4E. 17 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA02034: Cloud Tops sur le site de la NASA.
| | PIA02034: Cloud Tops PIA03911.jpg =

PIA03911: Enigmatic Terrain of Elysium Planitia


(Released 1 August 2002)
The lowland plains of Elysium Planitia contains a terrain that puzzles Mars scientists. The most intriguing and debatable landforms in the region are the plates and ridges seen through out most of this image. The plates can be up to 7 km diameter and appear to have been rafted apart. The plates can be "jigsaw fitted" back in place. Various investigators have attributed the morphology of the plains material located on the floor of the Elysium basin to a wide range of geologic processes/landforms. Some researchers think that the plains are composed of low-viscosity flood lavas, while others argue for a fluvial origin (dried remnants of hyperconcentrated floods or mudflows). The plains surface exhibits a "crusty" appearance that some researchers have attributed to crusted over flood lavas and pressure ridges. However, dried mudflows can exhibit the same type of texture. The debate continues. Numerous small dark haloed craters and a buried 1 km diameter crater can also be seen in the upper third of the image. Near the bottom of the image older cratered highlands and plains are visible as are the margins of the younger platy material.


Voir l'image PIA03911: Enigmatic Terrain of Elysium Planitia sur le site de la NASA.
| | PIA03911: Enigmatic Terrain of Elysium Planitia PIA03835.jpg =

PIA03835: Lunae Planum


(Released 24 June 2002)

The Science
This image is within a region called Lunae Planum, near 27.3N, 75.3W. This is a region west of the Viking 1 landing site that marks the transition between the Tharsis rise, a giant volcanic complex, and the northern lowland plains. The topographically high regions display numerous graben, signs of significant amounts of crustal deformation. The low areas display signs of resurfacing, including an unusual unit that appears to "lap" onto the base of the uplands. This scarp follows the transition between the high and low areas throughout much of the image. It is not clear what caused these deposits, but a likely candidate is ice, which is suspected to have played a major role in the surface morphology of the fretted terrains and many features within the northern lowlands.

The Story
Lunae Planum was named after the Roman moon goddess Luna, who in ancient stories ruled over the night just as her counterpart, the sun god Sol, ruled over the day (a "sol" is, in fact, the word used for a Martian day). Wearing the symbol of the crescent moon upon her head, Luna was known to ride on chariot pulled by two powerful horses. If the fictional Luna ever rode over the Martian plain named for her, she would find the terrain fairly rough going. You might say that she'd face a large number of "ruts" on a geologic scale.

That's because Lunae Planum marks the transition between the high Tharsis rise , a giant volcanic bulge on Mars, and the northern lowland plains. In this region, there are many signs of significant crustal deformation. Look for the dropped blocks of terrain called "graben" on the higher surfaces in this image. Graben are created when tectonic forces tear apart the terrain, leaving long, large "ruts" on the surface. We find graben on Earth too (think of Death Valley, the lowest dry land in the United States, or of the Jordan Dead Sea depression).

Much more exciting than these depressions is the thin ridge that seems to lap up against the base of the uplands at the bottom of this image. While it's not clear what caused these deposits, ice is a likely candidate. Scientists have hypothesized that the mysterious systems of valleys and ridges (called "fretted terrain") in this area were created through fractures and the collapse of large surface areas. Fretted terrain may have developed as icy debris flowed off of faulted valley walls and down onto the northern plains a long time ago in Martian history. This dramatic period would have coincided with the great Martian flood epoch, when melted ice from the subsurface was rapidly released in catastrophic amounts, carving out channels seen in other nearby regions.

Lunae Planum lies west of Chryse Planitia (the Plains of Gold), where the Viking 1 spacecraft made history on July 20, 1976 as the first spacecraft to land safely on the surface of another planet. Viking Lander 1 made its final transmission to Earth on November 11, 1982. Perhaps one day a future spacecraft will settle down on this bright plain, using information collected by Odyssey today as the basis of its ground studies of this complex terrain. And who knows? Maybe even the design of a future rover could recall the image of a swiftly moving chariot, carrying the symbol of a crescent moon.

Voir l'image PIA03835: Lunae Planum sur le site de la NASA.
| | PIA03835: Lunae Planum PIA01312.jpg =

PIA01312: Coprates Chasma


Context image for PIA01312
Coprates Chasma

This image shows part of Coprates Chasma.

Image information: VIS instrument. Latitude -15.3N, Longitude 301.2E. 17 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA01312: Coprates Chasma sur le site de la NASA.
| | PIA01312: Coprates Chasma PIA03026.jpg =

PIA03026: Southern Clouds


Context image for PIA03026
Southern Clouds

This image shows a system of clouds just off the margin of the South Polar cap. Taken during the summer season, these clouds contain both water-ice and dust.

Image information: VIS instrument. Latitude 80.2S, Longitude 57.6E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03026: Southern Clouds sur le site de la NASA.
| | PIA03026: Southern Clouds PIA01773.jpg =

PIA01773: Deuteronilus


Context image for PIA01773
Deuteronilus

The martian region called Deuteronilus is characterized by hills and mesas surrounded by broad debris slopes. Some of the slopes have surface markings that may indicate volatiles are mixed in with the debris.

Image information: VIS instrument. Latitude 41.9N, Longitude 18.1E. 19 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA01773: Deuteronilus sur le site de la NASA.
| | PIA01773: Deuteronilus PIA03847.jpg =

PIA03847: Hrad Valles


(Released 15 July 2002)
Hrad Valles is located north-northwest of the large Elysium Mons volcanic complex and is yet another example of a channel that likely carried fluids. The formation of Hrad Valles may have differed from some other channels on Mars in that its proximity to Elysium Mons could have promoted significant interactions between ground water or ice and the lavas of the volcano. Some scientists have suggested that very hot subsurface lavas may have intruded the local rocks and quickly melted and vaporized ground ice, causing the overlying rock to be broken up and possibly ejected. The breakup and ejection of the local rocks, combined with the newly formed volcanic rocks and melted ice, could have resulted in the formation of mudflows at the source of Hrad Valles, and over the longer term, continued release of melt water that carved the long, sinuous channel.


Voir l'image PIA03847: Hrad Valles sur le site de la NASA.
| | PIA03847: Hrad Valles PIA03054.jpg =

PIA03054: Lava Flows


Context image for PIA03054
Lava Flows

The lava flows in this image are only a very small part of the voluminous lava erupted from the Arsia Mons volcano.

Image information: VIS instrument. Latitude 19.1S, Longitude 244.5E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03054: Lava Flows sur le site de la NASA.
| | PIA03054: Lava Flows PIA01864.jpg =

PIA01864: Aeolis Planum


Context image for PIA01864
Aeolis Planum

The wind is eroding some of the materials in this region more readily than others, indicating a complex surface history.

Image information: VIS instrument. Latitude -3.1N, Longitude 145.5E. 18 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA01864: Aeolis Planum sur le site de la NASA.
| | PIA01864: Aeolis Planum PIA02351.jpg =

PIA02351: Sand Dunes


Context image for PIA02351
Sand Dunes

These sand dunes are located on the floor of Kaiser Crater.

Image information: VIS instrument. Latitude -46.7N, Longitude 19.8E. 17 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA02351: Sand Dunes sur le site de la NASA.
| | PIA02351: Sand Dunes PIA03788.jpg =

PIA03788: Degraded Crater Rim


(Released 3 May 2002)
The Science
The eastern rim of this unnamed crater in Southern Arabia Terra is very degraded (beaten up). This indicates that this crater is very ancient and has been subjected to erosion and subsequent bombardment from other impactors such as asteroids and comets. One of these later (younger) craters is seen in the upper right of this image superimposed upon the older crater rim material. Note that this smaller younger crater rim is sharper and more intact than the older crater rim. This region is also mantled with a blanket of dust. This dust mantle causes the underlying topography to take on a more subdued appearance.

The Story
When you think of Arabia, you probably think of hot deserts and a lot of profitable oil reserves. On Mars, however, Southern Arabia Terra is a cold place of cratered terrain. This almost frothy-looking image is the badly battered edge of an ancient crater, which has suffered both erosion and bombardment from asteroids, comets, or other impacting bodies over the long course of its existence. A blanket of dust has also settled over the region, which gives the otherwise rugged landscape a soft and more subdued appearance.

The small, round crater (upper left) seems almost gemlike in its setting against the larger crater ring. But this companionship is no easy romance. Whatever formed the small crater clearly whammed into the larger crater rim at some point, obliterating part of its edge. You can tell the small crater was formed after the first and more devastating impact, because it is laid over the other larger crater. How much younger is the small one? Well, its rim is also much sharper and more intact, which gives a sense that it is probably far more youthful than the very degraded, ancient crater.

Voir l'image PIA03788: Degraded Crater Rim sur le site de la NASA.
| | PIA03788: Degraded Crater Rim PIA03759.jpg =

PIA03759: Ganges Chasma Landslide


(Released 01 April 2002)
This image shows a spectacular landslide along a portion of the southern wall of Ganges Chasma within Valles Marineris. Landslides have very characteristic morphologies on Earth, which they also display on Mars. These morphologies include a distinctive escarpment at the uppermost part of the landslide--called a head scarp (seen at the bottom of this image), a down-dropped block of material below that escarpment that dropped almost vertically, and a deposit of debris that moved away from the escarpment at high speed. In this example, the wall rock displayed in the upper part of the cliff is layered, with spurs and chutes created by differing amounts of erosion. Below the steep scarp is a smoother, steep slope of material with small, narrow tongues of debris that have eroded off of the escarpment since the landslide occurred (a talus slope). The actual landslide deposit, visible in the upper half of this image, shows striations that form by differences in the side-by-side motion during high velocity emplacement. This immense landslide traveled some 70 km at speeds that probably exceeded 100 kilometers per hour (60 miles per hour) before coming to rest, forming abrupt, terminal fronts (upper right corner of image). Even at these high speeds, this massive landslide was moving for nearly an hour before it came to rest.

Voir l'image PIA03759: Ganges Chasma Landslide sur le site de la NASA.
| | PIA03759: Ganges Chasma Landslide PIA01947.jpg =

PIA01947: Polar Margin


Context image for PIA01947
Polar Margin

Taken during southern summer, this image shows both the ice layers of the southern polar cap and the dusty surface that surrounds the cap.

Image information: VIS instrument. Latitude -80.7N, Longitude 135.1E. 17 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA01947: Polar Margin sur le site de la NASA.
| | PIA01947: Polar Margin PIA03840.jpg =

PIA03840: Reull Vallis Source Region


(Released 1 July 2002)
The jumbled, chaotic terrain in this THEMIS image may represent a source region for the Reull Vallis, one of the larger channel systems in the southern hemisphere of Mars. Such regions of chaos are thought to form by the catastrophic release of groundwater. If this was the case, then the water would have flowed down gradient to the south and may have contributed to the formation of the Reull Vallis. The top of the image shows two short segments of channels that are interrupted by the chaos, demonstrating that there was a channel system in place before the ground foundered to produce the chaos. One of the more intriguing features seen among the jumbled blocks are narrow ledges that vaguely resemble bath tub rings in the way they conform to the topography. Two good examples are seen running roughly left-right across the image about a fourth of the way down. At first they appear to be layers protruding from the cliff faces, but upon closer inspection a more ledge-like character is evident. Note how they appear different between the south-facing and north facing cliffs. The occurrence of one of these features on the south-facing interior rim of the largest crater in the image but nowhere else around the rim argues against the idea that the ledges are due to a layer of rock cropping out throughout the landscape. Instead, they appear more like the edges of a layer of sediment that drapes the topography. It is possible that the sediment is mixed with ice and is best preserved in the shadowed portions of the terrain. There is no easy explanation for these unusual features. They represent one more Martian enigma.


Voir l'image PIA03840: Reull Vallis Source Region sur le site de la NASA.
| | PIA03840: Reull Vallis Source Region PIA03053.jpg =

PIA03053: Syrtis Major Windstreaks


Context image for PIA03053
Syrtis Major Windstreaks

These windstreaks are located on the downwind side of impact craters located in Syrtis Major.

Image information: VIS instrument. Latitude 0.1N, Longitude 70.1E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03053: Syrtis Major Windstreaks sur le site de la NASA.
| | PIA03053: Syrtis Major Windstreaks PIA03082.jpg =

PIA03082: Crater Fill


Context image for PIA03082
Crater Fill

This VIS image shows part of the floor of an unnamed crater located between the Hellas and Argyre Basins. At some point in time the entire floor of the crater was filled by material. That material is now being eroded away to form the depressions seen in the center and bottom of the image.

Image information: VIS instrument. Latitude 46.6S, Longitude 5.0E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03082: Crater Fill sur le site de la NASA.
| | PIA03082: Crater Fill PIA03809.jpg =

PIA03809: Coprates Chasma


(Released 21 May 2002)
The Science
This THEMIS visible image shows the northern interior wall of Coprates Chasma, one of the major canyons that form Valles Marineris. The cliff face seen in this image drops over 8 km from the plateau of Ophir Planum to the north (top) to the floor of Coprates. A complex set of ridges and chutes has been eroded into the layered rock that forms the canyon walls. Streamers of bright and dark material can be seen in many of the chutes, suggesting that loose material (sediment) is moving down the chutes toward the canyon floor. In many places this sediment has completely buried the wall. The uppermost layers near the rim of the canyon are brighter than the lower layers, suggesting that the upper layers are composed of different materials than occur further down the wall. Very few small impact craters can be seen in this image, indicating that the erosion and transport of material down the canyon wall and across the floor is occurring at a relatively rapid rate, so that any craters that form are rapidly buried or eroded.


The Story
From the smooth plateau of Ophir Planum (top of image), the dramatic canyon wall of Coprates Chasma falls in chutes and ridges for almost five miles to the dark floor of the canyon, where one lone, brooding impact crater can be seen. It is a rare sight in this part of the canyon, because all of the erosion on the cliff face happens so fast that most craters are rapidly buried or eroded.

You can see how looser material is transported down the canyon by observing all of the bright and dark streaks streaming down the wall. A particularly good example of this continuing descent is in the left-most canyon shoot, where material has tumbled down into its center crevice, gathering in a pile about mid-way down (left-hand side of the image, right at the point where the bright material meets the dark).

A canyon like this one is kind of like a slice through the geologic history of the planet. Each layer in the rock formed at different times, with different materials. You can tell that the bright material in this image is made of different rocks and minerals than the darker layers toward the bottom.

If a lander or a rover ever went to study a Martian canyon up close, a good place to land would be at the bottom. That's because all of the rock and soil from the top layers are carried down to the bottom. Without needing to climb up the steep canyon wall for a closer look, scientific instruments on the lander or rover would be able to study all the different kinds of materials right there at the bottom and determine what kinds of rock and soil formed through the ages.

Coprates Chasma is one of the major canyons that form Valles Marineris, the largest canyon system in the solar system. If Valles Marineris were on Earth, it would stretch all the way from California to Washington, D.C. Since it also slices a few miles down into the planet's interior, it's the perfect place to study the geological history of Mars.

Voir l'image PIA03809: Coprates Chasma sur le site de la NASA.
| | PIA03809: Coprates Chasma PIA03284.jpg =

PIA03284: Wind and Water?


Context image for PIA03284
Wind and Water?

The deposits within this crater show evidence of erosion by both wind and water. The region outside the crater is dominated by wind erosion.

Image information: VIS instrument. Latitude 1.4N, Longitude 204.1E. 18 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03284: Wind and Water? sur le site de la NASA.
| | PIA03284: Wind and Water? PIA03193.jpg =

PIA03193: Dissected Plateau


Context image for PIA03193
Dissected Plateau

This plateau borders Echus Chasma. The surface of the plateau has been dissected by shallow channels of unknown origin.

Image information: VIS instrument. Latitude 0.2N, Longitude 279.1E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03193: Dissected Plateau sur le site de la NASA.
| | PIA03193: Dissected Plateau PIA03634.jpg =

PIA03634: Dunes


Context image for PIA03634
Dunes

This dune field is located on the floor of a crater located southeast of Mutch Crater.

Image information: VIS instrument. Latitude 3.1S, Longitude 307.5E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03634: Dunes sur le site de la NASA.
| | PIA03634: Dunes PIA03699.jpg =

PIA03699: Blowouts


Context image for PIA03699
Blowouts

The dark crescents in this image are the backside of wind blowout features. Blowouts are common on Earth in beach regions and in the American MidWest.

Image information: VIS instrument. Latitude 1.1N, Longitude 202.8E. 18 NASA/JPL/ASUmeter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03699: Blowouts sur le site de la NASA.
| | PIA03699: Blowouts PIA03648.jpg =

PIA03648: Students' Target


Context image for PIA03648
Ascraeus Mons

After examining numerous THEMIS images and using the JMars targeting software, eighth grade students from Charleston Middle School in Charleston, IL, selected the location of -8.37N and 276.66E for capture by the THEMIS visible camera during Mars Odyssey's sixth orbit of Mars on Nov. 22, 2005. The students are investigating relationships between channels, craters, and basins on Mars. The Charleston Middle School students participated in the Mars Student Imaging Project (MSIP) and submitted a proposal to use the THEMIS visible camera.

Image information: VIS instrument. Latitude 8.8S, Longitude 279.6E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03648: Students' Target sur le site de la NASA.
| | PIA03648: Students' Target PIA01329.jpg =

PIA01329: Alba Patera


Context image for PIA01329
Alba Patera

These lava flows and channels are part of Alba Patera, a large collapsed volcano in the Tharsis region.

Image information: VIS instrument. Latitude 44.0N, Longitude 244.8E. 19 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA01329: Alba Patera sur le site de la NASA.
| | PIA01329: Alba Patera PIA03283.jpg =

PIA03283: Elysium Winds


Context image for PIA03283
Elysium Winds

The multiple trends of yardangs in this image indicate that the winds in the Elysium region have changed direction several times.

Image information: VIS instrument. Latitude 2.6N, Longitude 151.2E. 18 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03283: Elysium Winds sur le site de la NASA.
| | PIA03283: Elysium Winds PIA03633.jpg =

PIA03633: Olympus Mons Flows


Context image for PIA03633
Olympus Mons Flows

This image shows the massive Olympus Mons flows at the basal escarpment.

Image information: VIS instrument. Latitude 14.9S, Longitude 229.1E. 18 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03633: Olympus Mons Flows sur le site de la NASA.
| | PIA03633: Olympus Mons Flows PIA02159.jpg =

PIA02159: Gordii Dorsum


Context image for PIA02159
Gordii Dorsum

This image shows how the wind is eroding the material of Gordii Dorsum.

Image information: VIS instrument. Latitude 8.8N, Longitude 210.6E. 18 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA02159: Gordii Dorsum sur le site de la NASA.
| | PIA02159: Gordii Dorsum PIA03765.jpg =

PIA03765: Uzboi Vallis, Nirgal Vallis, and Luki Crater


(Released 9 April 2002)
This THEMIS image captures two channels (Nirgal Vallis is the smaller sinuous channel on the left and Uzboi Vallis is the larger channel located in the lower right) and Luki Crater located in the upper right. The mouth of Nirgal Vallis appears to be truncated by Uzboi Vallis. This indicates that Nirgal Vallis is an older channel than Uzboi Vallis. The floor of Uzboi Vallis was subsequently bombarded by an asteroid or comet which gouged out the 21 km diameter crater named Luki. Luki is named after a town in the Ukraine. Uzboi is the name of a dry river in Russia. Nirgal is the Babylonian name for Mars. Gullies and alluvial deposits discovered by Mars Global Surveyor are clearly visible on the polar-facing (south) wall and floor of Nirgal Vallis and also in the inner rim of Luki crater. These gullies appear to emanate from a specific layer in the walls. There is a pronounced sparsity of gullies on the equator-ward facing slopes but some are present in this image. The gullies have been proposed to have formed by the subsurface release of water. The western channel wall of Uzboi Vallis does not appear to have the fine-scale gullying as does Nirgal Vallis. However, the western channel wall of Uzboi Vallis does show some evidence of downslope movement (mass wasting). Some patches of dunes are also seen on the channel floor, notably along the edges of the channel floor near the canyon walls. There is also a landslide located along the southern wall of Luki Crater.

Voir l'image PIA03765: Uzboi Vallis, Nirgal Vallis, and Luki Crater sur le site de la NASA.
| | PIA03765: Uzboi Vallis, Nirgal Vallis, and Luki Crater PIA02682.jpg =

PIA02682: Tinto Vallis


Context image for PIA02682
Tinto Vallis

In this section of Tinto Vallis there are no tributary stream channels joining the main channel. This tells us that whatever carved the channel originated in some other region.

Image information: VIS instrument. Latitude -4.1N, Longitude 111.5E. 18 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA02682: Tinto Vallis sur le site de la NASA.
| | PIA02682: Tinto Vallis PIA01327.jpg =

PIA01327: Aram Chaos


Context image for PIA01327
Aram Chaos

Aram Chaos is a complex region which contains layered material with different surface textures and heavily fractured material forming chaos.

Image information: VIS instrument. Latitude 1.7N, Longitude 340.0E. 18 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA01327: Aram Chaos sur le site de la NASA.
| | PIA01327: Aram Chaos PIA02685.jpg =

PIA02685: Sabis Vallis


Context image for PIA02685
Sabis Vallis

The many small channels in this image are part of the larger Sabis Vallis.

Image information: VIS instrument. Latitude -0.7N, Longitude 35.8E. 18 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA02685: Sabis Vallis sur le site de la NASA.
| | PIA02685: Sabis Vallis PIA03762.jpg =

PIA03762: Naktong Valles


(Released 04 April 2002)
This image is located in a cratered highland region called Arabia Terra. The center right side of the image shows a branch of the valley network Naktong Vallis cutting into the eastern rim of an unnamed crater. A simple sequence of geologic events can be ascertained from this image. Early on in time this surface was subjected to bombardment from asteroids and comets thereby creating the pockmarked highlands. This was followed by channel incision into the former rim of the large crater seen near the center of this image. The last series of events to occur in this image are primarily aeolian (wind) related. These include the dark streaks seen on slopes. Numerous dark streaks coursing down the slopes of crater and channel walls suggests that the relatively bright dust which mantles the slopes slides downhill and either exposes a dust-free darker surface or creates a darker surface by increasing its roughness.

Voir l'image PIA03762: Naktong Valles sur le site de la NASA.
| | PIA03762: Naktong Valles PIA02298.jpg =

PIA02298: Crater Variety


Context image for PIA02298
Crater Variety

This image contains several different impact craters. The elongate depression near the top of the image is formed when more than one impactor hits at the same time (a double whammy). The large crater at the bottom formed in a single impact, but was subsequently filled with material that is now being removed.

Image information: VIS instrument. Latitude 13.5N, Longitude 167.2E. 36 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA02298: Crater Variety sur le site de la NASA.
| | PIA02298: Crater Variety PIA03580.jpg =

PIA03580: Crater Dunes


Context image for PIA03580
Crater Dunes

Individual dunes are found on the floor of this unnamed crater located to the north of Rabe Crater.

Image information: VIS instrument. Latitude 41.1S, Longitude 34,4E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03580: Crater Dunes sur le site de la NASA.
| | PIA03580: Crater Dunes PIA03646.jpg =

PIA03646: Polar Textures


Context image for PIA03646
Polar Textures

This VIS image shows part of the south polar region. The ejecta from the relatively young crater covers the rougher textured polar surface.

Image information: VIS instrument. Latitude 81S, Longitude 54.5E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03646: Polar Textures sur le site de la NASA.
| | PIA03646: Polar Textures PIA02694.jpg =

PIA02694: Southern Clouds


Context image for PIA02694
Southern Clouds

These clouds occurred near the south polar cap at the end of southern summer.

Image information: VIS instrument. Latitude -80.3N, Longitude 84.9E. 17 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA02694: Southern Clouds sur le site de la NASA.
| | PIA02694: Southern Clouds PIA03773.jpg =

PIA03773: White Rock


(Released 19 April 2002)
The Science
"White Rock" is the unofficial name for this unusual landform which was first observed during the Mariner 9 mission in the early 1970's. As later analysis of additional data sets would show, White Rock is neither white nor dense rock. Its apparent brightness arises from the fact that the material surrounding it is so dark. Images from the Mars Global Surveyor MOC camera revealed dark sand dunes surrounding White Rock and on the floor of the troughs within it. Some of these dunes are just apparent in the THEMIS image. Although there was speculation that the material composing White Rock could be salts from an ancient dry lakebed, spectral data from the MGS TES instrument did not support this claim. Instead, the White Rock deposit may be the erosional remnant of a previously more continuous occurrence of air fall sediments, either volcanic ash or windblown dust. The THEMIS image offers new evidence for the idea that the original deposit covered a larger area. Approximately 10 kilometers to the southeast of the main deposit are some tiny knobs of similarly bright material preserved on the floor of a small crater. Given that the eolian erosion of the main White Rock deposit has produced isolated knobs at its edges, it is reasonable to suspect that the more distant outliers are the remnants of a once continuous deposit that stretched at least to this location. The fact that so little remains of the larger deposit suggests that the material is very easily eroded and simply blows away.

The Story
Fingers of hard, white rock seem to jut out like icy daggers across a moody Martian surface, but appearances can be deceiving. These bright, jagged features are neither white, nor icy, nor even hard and rocky!

So what are they, and why are they so different from the surrounding terrain?

Scientists know that you can't always trust what your eyes see alone. You have to use other kinds of science instruments to measure things that our eyes can't see . . . things like information about what kinds of minerals make up the landforms. Mars scientists once thought, for instance, that these unusual features might be vast hills of salt, the dried up remains of a long-ago, evaporated lake.

Not so, said an instrument on the Mars Global Surveyor spacecraft, which revealed that the bright material is probably made up of volcanic ash or windblown dust instead. And talk about a cyclical "ashes to ashes, dust to dust" story! Particles of this material fell and fell until they built up quite a sedimentary deposit, which was then only eroded away again by the wind over time, leaving the spiky terrain seen today. It looks white, but its apparent brightness arises from the fact that the surrounding material is so dark.

Of course, good eyesight always helps in understanding. A camera on Mars Global Surveyor with close-up capabilities revealed that sand dunes are responsible for the smudgy dark material in the bright sediment and around it. But that's not all. The THEMIS camera on the Mars Odyssey spacecraft that took this image reveals that this ashy or dusty deposit once covered a much larger area than it does today. Look yourself for two small dots of white material on the floor of a small crater nearby (center right in this image). They preserve a record that this bright deposit once reached much farther. Since so little of it remains, you can figure that the material probably isn't very hard, and simply blows away.

One thing's for sure. No one looking at this image could ever think that Mars is a boring place. With all of its bright and dark contrasts, this picture would be perfect for anyone who loves Ansel Adams and his black-and-white photography.

Voir l'image PIA03773: White Rock sur le site de la NASA.
| | PIA03773: White Rock PIA01215.jpg =

PIA01215: Noachis Terra


Context image for PIA01215
Noachis Terra

This closed depression is located in Noachis Terra. To the south a channel leads to second region of erosion.

Image information: VIS instrument. Latitude -46.4N, Longitude 5.1E. 17 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA01215: Noachis Terra sur le site de la NASA.
| | PIA01215: Noachis Terra PIA03079.jpg =

PIA03079: Dunes


Context image for PIA03079
Dunes

These dunes are located on the floor of an unnamed crater SE of Campbell Crater.

Image information: VIS instrument. Latitude 57.3S, Longitude 168.7E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03079: Dunes sur le site de la NASA.
| | PIA03079: Dunes PIA03596.jpg =

PIA03596: Argyre Gullies


Context image for PIA03596
Argyre Gullies

This gullies are located on the rim of the large Argyre Basin.

Image information: VIS instrument. Latitude 46.8S, Longitude 309.0E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03596: Argyre Gullies sur le site de la NASA.
| | PIA03596: Argyre Gullies PIA03681.jpg =

PIA03681: Ganges Landslide


Context image for PIA03681
Ganges Landslide

Two large landslides dominate this image of part of Ganges Chasma. The eroded surface of an old landslide covers the north half of the image, while a more recent landslide occurs to the south.

Image information: VIS instrument. Latitude -6.7N, Longitude 310.4E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03681: Ganges Landslide sur le site de la NASA.
| | PIA03681: Ganges Landslide PIA03811.jpg =

PIA03811: Northern Arabia Etched Terrain


(Released 23 May 2002)
The Science
Many places on Mars display scabby, eroded landscapes that commonly are referred to as etched terrain. These places have a ragged, tortured look that reveals a geologic history of intense deposition and erosion. This THEMIS image shows such a place. Here a 10 km diameter crater is superposed on the floor of a 40 km diameter crater, most of which is outside of the image but apparent in the MOLA context image. The rugged crater rim material intermingles with low, flat-topped mesas and layers with irregular outlines along with dune-like ridges on many of the flat surfaces. The horizontal layers that occur throughout the scene at different elevations are evidence of repeated episodes of deposition. The apparent ease with which these deposits have been eroded, most likely by wind, suggests that they are composed of poorly consolidated material. Air-fall sediments are the likely candidate for this material rather than lava flows. The dune-like ridges are probably inactive granule ripples produced from the interaction of wind and erosional debris. The large interior crater displays features that are the result of deposition and subsequent erosion. Its raised rim is barely discernable due to burial while piles and blocks of slumped material along the interior circumference attest to the action of erosion. Some of the blocks retain the same texture as the surrounding undisrupted surface. It appears as if the crater had been buried long enough for the overlying material to be eroded into the texture seen today. Then at some point this overburden foundered and collapsed into the crater. Continuing erosion has caused the upper layer to retreat back from what was probably the original rim of the crater, producing the noncircular appearance seen today. The length of time represented by this sequence of events as well as the conditions necessary to produce them are unknown.


The Story
Have you ever seen an ink etching, where the artistic cross-hatching of lines creates the image of a town or a landscape? Click on the large THEMIS image above, and you'll see why this scabby, eroded landscape is known as etched terrain. Etched terrain is found in lots of areas of Mars. These places have a ragged, tortured look that reveals a geologic history where material has been deposited and eroded away with great intensity over time.

Much of the terrain looks like peeling, layered-on paint. In a sense, that's what it's all about. Deposits of dust and dirt settled down from the air in layer after uneven layer, while the wind kept eroding it away. Dune-like ridges also mark the surface in tiny ripples. Unlike the loose sand dunes we're familiar with on Earth, these ridges are probably harder and more stationary, They are produced by long-term interactions between the sculpting, knife-like action of the Martian wind and the deposited materials of dust and "dirt" on the surface.

What we can also see in this image is a six-mile-wide crater. If you look at the context image to the right, you can see that it is actually a crater within a crater. The larger crater is about 24 miles wide in diameter. (Students! How many times bigger is the larger crater than the one that lies inside of it? If you look at the context image, you can get a really good sense of what "four times bigger" really means.)

What's interesting about this crater is that it doesn't have typical features known to many craters: it isn't nice-and-neatly round and its raised rim is barely noticeable. That's because there's been a whole lot of depositing and eroding going on here too. After the impact crater formed, it was probably entirely buried by deposits over time. In fact, it was probably buried long enough for the overlying material to be eroded into the texture seen today. At some point, the load on top foundered and collapsed into the crater.

Around the inside circumference of the crater, you can see piles of slumped material (material that has slid downslope). Some of these blocks of material have the same texture as surrounding terrain that hasn't been disrupted. That's because of continuing erosion acting on all of these features. In the upper layers, continuing erosion has also caused a retreat from the original rim of the crater, producing the noncircular shape seen today.

Voir l'image PIA03811: Northern Arabia Etched Terrain sur le site de la NASA.
| | PIA03811: Northern Arabia Etched Terrain PIA03774.jpg =

PIA03774: Alba Patera


(Released 22 April 2002)
The Science
This image, centered near 46.5 N and 119.3 W (240.7 E), is on the northwestern flank of a large, broad shield volcano called Alba Patera. This region of Mars has a number of unique valley features that at first glance look dendritic much in the same pattern that rivers and tributaries form on Earth. A closer look reveals that the valleys are quite discontinuous and must form through a different process than surface runoff of liquid water that is common on Earth. A number of processes might have taken place at some point in the Martian past to form these features. Some of the broad valley features bear some resemblance to karst topography, where material is removed underground by melting or dissolving in groundwater causing the collapse of the surface above it. The long narrow valleys resemble surfaces where groundwater sapping has occurred. Sapping happens when groundwater reaches the surface and causes headward erosion, forming long valleys with fewer tributaries than is seen with valleys formed by surface water runoff. The volcano itself might have been a source of heat and energy, which played a role in producing surfaces that indicate an active groundwater system.

The Story
Fluid, oozing lava poured somewhat lazily over this area long ago. It happened perhaps thousands of times, over hundreds of thousands of Martian years, creating the nearly smooth, plaster-of-Paris-looking terrain seen today. (Small craters also dent the area, though they may deceive you and look like raised bumps instead. That's just a trick of the eye and the lighting - tilt your head to your left shoulder, and you should see the craters pit the surface as expected.)

The lava flows came from a Martian "shield" volcano named Alba Patera. Shield volcanoes get their name from their appearance: from above, they look like large battle shields lying face up to the sky as if a giant, geological warrior had lain them down. Perhaps one did if you think of a volcano as a "geologic warrior," that is. These volcanoes aren't too fierce, however. Because of the gentle layering of lava over time, they don't stand tall and angry against the horizon, but instead have relatively gentle slopes and are spread out over large areas. (On Earth, the Hawaiian Islands are examples of shield volcanoes, but you can't see much of their expanse, since they rise almost three miles from the ocean floor before popping out above the water's surface.)

What's most interesting in this picture are all of the branching features that lightly texture the terrain. The patterns may look like those caused by rivers here on Earth, but geologists say that no surface streams on Mars were responsible. That's no disappointment, however, to those who'd like to find water on Mars, because there are still intriguing water-related possibilities here.

Some of the broad valley features in this image look like karsts, a terrain found on Earth in Karst, a limestone area on the Adriatic Sea in modern-day Croatia, and in other world regions including France, China, the American Midwest, Kentucky, and Florida. Karst terrain on Earth is barren land with all kinds of caves, sinkholes, and underground rivers that excavate the subsurface, causing the surface above it to collapse. So, perhaps it's like that in this region on Mars as well. Future Martian spelunkers should be excited, because most caves on Earth are in karst areas.

Other suggestions of water here are some long, narrow valleys that resemble Earth surfaces where groundwater has sapped away the terrain. Sapping occurs when groundwater erodes slopes, creating valleys. Water action can be concentrated at valley heads, leading to what is called their "headward growth." That may be what has happened here on Alba Patera as well.

All of these features suggest the action of liquid water, but Mars is so cold, you might wonder if any water would have to be as frozen as the world it is on. Well . . . that depends! Remember that this area is part of a volcano, and volcanoes can put out enough heat and energy below the surface to keep water warm enough to flow - if not now, then at least in the past when the volcano was more active.

Voir l'image PIA03774: Alba Patera sur le site de la NASA.
| | PIA03774: Alba Patera PIA03598.jpg =

PIA03598: Canyon Floor Deposits


Context image for PIA03598
Canyon Floor Deposits

The layered and wind eroded deposits seen in this VIS image occur on the floor of Chandor Chasma.

Image information: VIS instrument. Latitude 5.2S, Longitude 283.4E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03598: Canyon Floor Deposits sur le site de la NASA.
| | PIA03598: Canyon Floor Deposits PIA03549.jpg =

PIA03549: Odd Crater


Context image for PIA03549
Odd Crater

This unusual crater is located in Sinai Planum. Not only is the shape of this crater odd, but just how the ridges on the floor formed is unknown.

Image information: VIS instrument. Latitude 14.6S, Longitude 277.1E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03549: Odd Crater sur le site de la NASA.
| | PIA03549: Odd Crater PIA02197.jpg =

PIA02197: Dust


Context image for PIA02197
Dust

This dust avalanche is located in part of Noctis Labyrinthus.

Image information: VIS instrument. Latitude -4.6N, Longitude 266.3E. 17 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA02197: Dust sur le site de la NASA.
| | PIA02197: Dust PIA03292.jpg =

PIA03292: Millochau Cr.


Context image for PIA03292
Millochau Cr.

The floor of Millochau Crater has been filled by material that is now being eroded away.

Image information: VIS instrument. Latitude -21.1N, Longitude 85.6E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03292: Millochau Cr. sur le site de la NASA.
| | PIA03292: Millochau Cr. PIA03818.jpg =

PIA03818: Floor of Juventae Chasma


(Released 30 May 2002)
Juventae Chasma is an enormous box canyon (250 km X 100 km) which opens to the north and forms the outflow channel Maja Vallis. Most Martian outflow channels such as Maja, Kasei, and Ares Valles begin at point sources such as box canyons and chaotic terrain and then flow unconfined into a basin region. This image captures a portion of the western floor of Juventae Chasma and shows a wide variety of landforms. Conical hills, mesas, buttes and plateaus of layered material dominate this scene and seem to be "swimming" in vast sand sheets. The conical hills have a spur and gully topography associated with them while the flat topped buttes and mesas do not. This may be indicative of different materials that compose each of these landforms or it could be that the flat-topped layer has been completely eroded off of the conical hills thereby exposing a different rock type. Both the conical hills and flat-topped buttes and mesas have extensive scree slopes (heaps of eroded rock and debris). Ripples, which are inferred to be dunes, can also be seen amongst the hills. No impact craters can be seen in this image, indicating that the erosion and transport of material down the canyon wall and across the floor is occurring at a relatively rapid rate, so that any craters that form are rapidly buried or eroded.

Voir l'image PIA03818: Floor of Juventae Chasma sur le site de la NASA.
| | PIA03818: Floor of Juventae Chasma PIA02892.jpg =

PIA02892: Winding Side Canyon (Louros Valles)

Viewers experience roller-coaster twists and turns as they fly up a winding tributary valley that feeds into Valles Marineris, the "Grand Canyon of Mars." Geologists think channels such as these were carved by water as it escaped through faults and cracks in the subsurface. This caused the ground above it to collapse, leaving a meandering channel that resembles a stream valley on Earth.

This scene comes from "Flight Through Mariner Valley," an exciting video produced for NASA by the Jet Propulsion Laboratory. The video takes viewers on a simulated flight into Valles Marineris, where they explore its scenic wonders as their imaginary scout ship dives low over landslides and races through winding canyons.

The video features high-resolution images from Arizona State University's Thermal Emission Imaging System multi-band camera on NASA's Mars Odyssey. The images, which show details as small as 300 meters (1,000 feet) across, were taken at infrared wavelengths during the Martian daytime. Scientists joined hundreds of individual frames from the camera into a giant mosaic, then colored the mosaic to approximate how Mars would appear to the human eye.

To give the mosaic depth and height, moviemakers fitted it to a computerized topographic model for Valles Marineris. This was developed using hundreds of thousands of altitude measurements by the Mars Orbiter Laser Altimeter, an instrument on NASA's Mars Global Surveyor spacecraft.



Voir l'image PIA02892: Winding Side Canyon (Louros Valles) sur le site de la NASA.
| | PIA02892: Winding Side Canyon (Louros Valles) PIA03799.jpg =

PIA03799: Arsia Mons


(Released 20 May 2002)
The Science
This THEMIS visible image shows a portion of the summit region of Arsia Mons, one of the four giant volcanoes in the Tharsis region of Mars. This volcano stands over 20 km above the surrounding plains, and is approximately 450 km in diameter at its base. A large volcanic crater known as a "caldera" is located at the summit of all of the Tharsis volcanoes. These calderas are produced by massive volcanic explosions and collapse. The Arsia Mons summit caldera alone is over 120 km in diameter, making it larger than many volcanoes on Earth. The THEMIS image shows a portion of the eastern wall of the caldera, revealing the steep walls and linear features associated with the collapse that formed the caldera. The ridge with linear faults that extends from the lower left toward the center right was formed at some stage during a collapse event. Several circular pits are present, and several of these pits appear to have coalesced into a long, unusual trough. These pits and troughs likely formed when lava was removed from beneath them and the overlying surface collapsed. Numerous lava flows can be seen on the floor of the caldera. Many of these flows occurred after the collapse that formed the caldera crater, and have buried many of the pre-existing features. The faulted, pitted ridge appears to have been partially flooded by these lava flows, indicating that the caldera of Arsia Mons has undergone a complex history of numerous events. The wispy bright features throughout the image are water-ice clouds that commonly form over the volcano summits during the early northern spring when this image was acquired.

The Story
When the Martian volcano Arsia Mons exploded long ago, it sent lava spewing out everywhere. With the removal of this molten material, the volcano then collapsed at its opening (the top of its cone) to form a sunken volcanic crater known as a caldera. You can see it more fully in the context image to the right.

The eastern wall of the caldera is the pale white strip running diagonally across the bottom third of the image. By looking at this steep wall and the streaks running down its sides, you can imagine how all of the remaining material rushed down into the void left by expelled magma and ash to form the caldera depression. Numerous lava flows that occurred after the collapse texturize the floor of the caldera, and have buried many of its pre-existing features.

These later lava flows might be a little harder to see, because wispy bright features blur this image slightly, giving it an almost marbled, hazy appearance. They are water-ice clouds that typically form over the volcano summits during the early northern spring. What they don't obscure very much is the raised ridge created during the collapse of the volcano's cone (running slightly north of the caldera wall along the same diagonal).

Draped across the smoother caldera floor, this pitted ridge has been partially flooded by lava flows, indicating quite a complex history of geologic events has taken place here. Faults cut through the ridge, contributing to its streamer-like appearance. And, in a process somewhat like the formation of the caldera itself, all of the round and oblong pits and troughs in the ridge formed when lava was removed from underneath these areas, and the overlying surface then collapsed.

Arsia Mons is one of the four giant Martian volcanoes found in a region called Tharsis. Arsia Mons is about 270 miles wide in diameter at its base, and rises 12 miles high above the surrounding plains. The caldera at its summit is more than 72 miles wide, making it larger than volcanoes on Earth. By comparison, the largest volcano on Earth is Mauna Loa on the island of Hawaii, which is about 6.3 miles high and 75 miles wide in diameter at its base.

Voir l'image PIA03799: Arsia Mons sur le site de la NASA.
| | PIA03799: Arsia Mons PIA03909.jpg =

PIA03909: Poynting Crater Ejecta


(Released 30 July 2002)
Located roughly equidistant between two massive volcanoes, the approximately 60 km Poynting Crater and its ejecta have experienced an onslaught of volcanic activity. Pavonis Mons to the south and Ascraeus Mons to the north are two of the biggest volcanoes on Mars. They have supplied copious amounts of lava and presumably, ash and tephra to the region. This THEMIS image captures evidence for these volcanic materials. The rugged mound of material that dominates the center of the image likely is ejecta from Poynting Crater just 40 km to the west (see MOLA context image). The textural features of this mound are surprisingly muted, giving the appearance that the image is out of focus or has atmospheric obscuration. But the surrounding terrain shows clear textural details and the mound itself displays tiny craters and protruding peaks that demonstrate the true clarity of the image. One conclusion is that the ejecta mound is covered by a mantle of material that could be related to its proximity to the big volcanoes. The tephra and ash deposits produced by these volcanoes could easily accumulate to a thickness that would bury any textural details that originally existed on the ejecta mound. In contrast, the lava flows that lap up to the base of the mound show clear textural details, indicating that they came after the eruptive activity that mantled the ejecta mound. Given the fact that any ejecta material is preserved at all suggests that the impact that produced Poynting Crater postdated the major construction phase of the volcanoes.


Voir l'image PIA03909: Poynting Crater Ejecta sur le site de la NASA.
| | PIA03909: Poynting Crater Ejecta PIA03093.jpg =

PIA03093: Ridges Down South


Context image for PIA03093
Southern Spots

This image shows part of an area just off the margin of the south polar cap. The bright and dark markings are identical to some seen on the cap, telling us that ice is located at the surface. The unusual branching ridges in the center of the image are of unknown origin.

Image information: VIS instrument. Latitude 80.3S, Longitude 56.6E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03093: Ridges Down South sur le site de la NASA.
| | PIA03093: Ridges Down South PIA02174.jpg =

PIA02174: Valentine's Day


Context image for PIA02174
Valentine's Day

This isolated mesa [lower left center of the image] has an almost heart-shaped margin. Happy Valentine's Day from Mars.

Image information: VIS instrument. Latitude 29.4N, Longitude 79.1E. 18 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA02174: Valentine's Day sur le site de la NASA.
| | PIA02174: Valentine's Day PIA01872.jpg =

PIA01872: Crater Dunes


Context image for PIA01872
Crater Dunes

The sand dunes in this image surround the northwestern half of the central peak of this crater.

Image information: VIS instrument. Latitude 71.8N, Longitude 344.5E. 20 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA01872: Crater Dunes sur le site de la NASA.
| | PIA01872: Crater Dunes PIA02173.jpg =

PIA02173: Dune Variety


Context image for PIA02173
Dune Variety

This image of the east end of Coprates Chasma contains several dune fields. The dunes in the center of the image are larger and darker than the dunes at the bottom.

Image information: VIS instrument. Latitude -14.8N, Longitude 304.3E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA02173: Dune Variety sur le site de la NASA.
| | PIA02173: Dune Variety PIA03094.jpg =

PIA03094: Lava Layers


Context image for PIA03094
Southern Spots

These lava flows originated at Arsia Mons.

Image information: VIS instrument. Latitude 20S, Longitude 232.6E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03094: Lava Layers sur le site de la NASA.
| | PIA03094: Lava Layers PIA01875.jpg =

PIA01875: Mamers Vallis


Context image for PIA01875
Mamers Vallis

This images shows part of the main channel of Mamers Vallis as well as one of it's tributaries.

Image information: VIS instrument. Latitude 39.5N, Longitude 16.0E. 19 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA01875: Mamers Vallis sur le site de la NASA.
| | PIA01875: Mamers Vallis PIA02895.jpg =

PIA02895: Mars Canyon View

Flying through the canyons and over the ridges of Valles Marineris, viewers can experience some of the thrills that gripped explorers who pushed into unknown regions on Earth. Buried in the rocks of this magnificent Martian canyon lies a history book of Mars that scientists have just begun to open.

This scene comes from "Flight Through Mariner Valley," an exciting video produced for NASA by the Jet Propulsion Laboratory. The video takes viewers on a simulated flight into Valles Marineris, where they explore its scenic wonders as their imaginary scout ship dives low over landslides and races through winding canyons.

The video features high-resolution images from Arizona State University's Thermal Emission Imaging System multi-band camera on NASA's Mars Odyssey. The images, which show details as small as 300 meters (1,000 feet) across, were taken at infrared wavelengths during the Martian daytime. Scientists joined hundreds of individual frames from the camera into a giant mosaic, then colored the mosaic to approximate how Mars would appear to the human eye.

To give the mosaic depth and height, moviemakers fitted it to a computerized topographic model for Valles Marineris. This was developed using hundreds of thousands of altitude measurements by the Mars Orbiter Laser Altimeter, an instrument on NASA's Mars Global Surveyor spacecraft.



Voir l'image PIA02895: Mars Canyon View sur le site de la NASA.
| | PIA02895: Mars Canyon View PIA03039.jpg =

PIA03039: Dunes in Darwin Crater


Context image for PIA03039
Dunes in Darwin Crater

The dunes and sand deposits in this image are located on the floor of Darwin Crater.

Image information: VIS instrument. Latitude 57.4S, Longitude 340.2E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03039: Dunes in Darwin Crater sur le site de la NASA.
| | PIA03039: Dunes in Darwin Crater PIA03900.jpg =

PIA03900: Ulysses Patera


(Released 18 July 2002)
It is helpful to look at the context for this THEMIS image, which covers a large area over the summit of Ulysses Patera. Ulysses Patera is one of the many volcanoes that make up the giant Tharsis volcanic province, although Ulysses itself is fairly small in comparison to the other volcanoes in this area. In the context image, there are 3 circular features near the top of the volcano. The large, central feature is called a "caldera," and is the result of volcanic activity at Ulysses. The other two circular features are impact craters. The THEMIS image primarily spans across the central caldera, but also covers a portion of the northernmost impact crater. We know that the large central caldera must have formed earlier than the two craters, because its circular form has been cut by the smaller crater rims.

In the THEMIS image, there are stair-stepping plateaus in the northern portion of the image. These are part of the rim of the northern crater, and are caused by collapse or subsidence after the impact event. Just to the south of this crater, "rayed" patterns can be seen on part of the caldera floor. The rayed pattern is most likely due to a landslide of material down the crater rim slope. Another possibility is that the impact that formed the northern crater caused material to be ejected radially, and then parts of the ejecta have either been buried or eroded away. Other signs of mass movement events in this image are dark streaks, caused by dust avalanches, visible in the caldera's northern wall. In the central portion of the image, there are two lobe-shaped features-one overlaps the other-that appear to have flowed westward. It is likely that these features are ejecta lobes, because they are located adjacent to the southeastern crater (see context image). The fluidized appearance of these ejecta lobes is probably due to a significant amount of ice or water being present in the soil at the time of impact. We know that the southeastern crater must have formed after the northern crater, because the fluidized ejecta lobe overlies the rayed pattern. A close-up look at the fluidized ejecta lobes reveals a different surface "texture" than the surrounding caldera floor. This could be due to compressional features that formed during the lobe emplacement, or to contrasting surface properties that cause the flows to be eroded differently than the caldera floor. In the lower portion of the image, there is a cluster of small circular features in the southernmost part of the central caldera. These features may be layered material that has since been eroded into circular plateaus, or they may be degraded volcanic cones, which would indicate a later stage of smaller-scale volcanism within the caldera. Volcanic cones are common in many calderas on Earth, and are formed after the initial stage of volcanic activity in that caldera. Finally, in the southern wall of the caldera, there is classic "spur-and-gully" morphology. This type of morphology is often formed on steep slopes, where variations in wall resistance cause the surface to be eroded more easily in some areas.

Voir l'image PIA03900: Ulysses Patera sur le site de la NASA.

| | PIA03900: Ulysses Patera PIA03824.jpg =

PIA03824: Auqakuh Valles


(Released 7 June 2002)

The Science
This ancient sinuous river channel, located near 30° N, 299° W (61° E), was likely carved by water early in Mars history. Auqakuh Valles cuts through a remarkable series of rock layers that were deposited and then subsequently eroded. This change from conditions favoring deposition to those favoring erosion indicates that the environment of this region has changed significantly over time. In addition, the different rock layers seen in this image vary in hardness, with some being relatively soft and easily eroded, whereas others are harder and resistant. These differences imply that these layers vary in their composition, physical properties, and/or degree of cementation, and again suggest that major changes have occurred during the history of this region. Similar differences occur throughout the southwest U.S., where hard rock layers, such as the limestones and sandstones in the Grand Canyon, form resistant cliffs, whereas softer mudstones are easily eroded to form broad slopes. The Martian layers, such as the smooth, dark-toned mesas visible in numerous places to the right (east) of the channel, were once continuous across the region. As these layers have eroded, they have produced a wide array of textures, from smooth surfaces, to knobby terrains, to the unusual lobate patterns seen in the upper right of the image.

The most recent activity in the region appears to be the formation of mega-ripples by the wind. These ripples, spaced approximately 75 m apart, form perpendicular to the wind direction, and can be seen following the pattern of the channel floor as it curves through this region. This pattern shows that even this relatively small channel, which varies in width from about 500 to 750 m throughout this image, acts to funnel the wind down the channel.


The Story

Auqakuh Vallis, an ancient river channel that winds its way down the center of this image, is the "fossil" remains of an earlier, probably more watery time in Martian history. Now, you might think that Auqakuh has something to do with Aqua, the Latin word for water. Instead, Auqakuh is the word for Mars in the Quechuan language of the Incan Empire that once stretched across vast portions of South America.

This Inca-honoring river channel cuts through a remarkable series of rock layers that expose a history of climate change in the region. The coarse, rugged, and wildly textured terrain was created as rock layers were first deposited, then eroded over time. Some of the rock layers are soft and easily eroded, while others are clearly harder and more resistant. From these differences, geologists can tell that the layers are made up of different materials, have different physical characteristics, and are either loosely or strongly cemented together. That suggests major environmental changes over time as well, since different kinds of rocks form under different conditions.

Similar differences in rock layers occur throughout the Southwest of the United States. The next time you're visiting the Grand Canyon or hiking in similar terrain, notice where hard rock layers, such as limestones and sandstones, form resistant cliffs, whereas softer mudstones are easily eroded to form broad slopes along the canyon.

Just in case the river channel in the above image looks more like a raised vein rather than a hollowed out channel, try looking at the half-circle depression on the left-hand side of the image, about a third of the way up. The bright features on the upper half streak down toward the bottom of the bowl. Once you focus on this for a while, your brain figures out that the channel must be depressed as well.

Now that you can see that the channel cuts into the surface, click on the image for a closer look at the bottom of the channel. Mega-ripples about 82 yards apart line the channel floor as it curves through the region. This pattern shows that even this relatively small channel, which varies from about one-third to a half of a mile in width, funnels the wind down its curving length, creating perpendicular piles of waving texture on the channel's floor.

East of the channel, smooth, dark-toned mesas are visible, providing a scant reminder that they were once continuous across the region. As these layers have eroded, they've produced a wide array of textures, from smooth surfaces, to knobby terrains, to the unusual curved, lobe-like patterns seen in the upper right of the image.

Voir l'image PIA03824: Auqakuh Valles sur le site de la NASA.
| | PIA03824: Auqakuh Valles PIA03790.jpg =

PIA03790: Pavonis Mons


(Released 7 May 2002)
The Science
Four exceptionally large volcanoes in a region called Tharsis are unique to the western hemisphere of Mars. Three of the Tharsis volcanoes, Ascraeus Mons, Pavonis Mons, and Arsia Mons, are aligned along a NE - SW trend, with Pavonis in the middle, straddling the equator. Olympus Mons, the fourth Tharsis volcano and the largest in the solar system, is located NW of Pavonis Mons. At the top right of the image, the rim of the caldera of Pavonis Mons is just barely visible, with steep NE-facing cliffs formed by the collapse of a portion of the volcano's summit. At the southwest edge of the caldera, additional fractures are apparent and may someday collapse, making the summit caldera even larger. This image of Pavonis Mons also demonstrates some of the distinctive characteristics of the martian surface in the Tharsis region. Tharsis is very dusty; the dust covers everything like fresh snow, which is the reason why there is very little contrast in the surface materials as compared to other THEMIS images that show apparently bright and dark surfaces in the same picture. This dust cover makes it difficult to distinguish different geologic or geomorphic units in the area, and even the piles of lava flows that constructed this volcano are difficult to make out. Most of the craters on the volcano are small, a few tens of meters to kilometers in diameter, suggesting that this surface is a relatively young one on Mars (the older a surface is, the more and larger craters it has). In the lower third of the image, linear arrangements of small, round pits can be seen. These features are commonly called "pit chains" and most likely represent the collapse of lava tubes. Lava tubes are like a subway, allowing molten rock to move from place to place underground. A particularly large pit near the bottom center of the image looks a lot like a crater. However, the lack of degradation of the rim of this feature suggests that if it were an impact crater, it would be relatively young, and an ejecta blanket of debris should be visible. Because there is no apparent sign of an ejecta blanket, it is more likely that this and nearby similar features are simply the result of larger collapses.

The Story
Mars is Volcano Land, home to the largest volcanoes in the solar system. The small context image to the right shows a hole reminiscent of Darth Vader's Death Star, but it's really the sunken-in mouth of Pavonis Mons, one of three volcanoes that fall in a line across the Martian surface, almost like giant beads. You can see the very edge of this deep volcano hole at the uppermost righthand corner of the image. Deep fractures at the southwest edge of the caldera suggest that surrounding terrain might collapse, making the volcano depression even larger someday.

Except for this darker hole, the landscape looks rather drab and uniform in color. No wonderful black-and-white contrasts of terrain appear here as they do in many other THEMIS images. That's because dust in this area covers everything like fresh snow, giving the surface a smooth and unvaried look. Unfortunately, that makes it really hard for scientists to understand what different kinds of geologic features are present and what the lava flows are like. Usually, you can tell something about when each lava layer happened . . . but that depends on being able to see how each of the layers flowed over and under one another. That's not apparent here.

There are, however, some really cool features to study in this image. Deep, trenchlike tracings can be seen in the lower third of the image, as if a giant finger had scooped them out. So, how did they form?

When a volcano erupts, lava flows in rivers, finding narrow channels that make easy pathways down the slopes. Gradually, the surface of the flow becomes crusted over, and the molten lava is confined to a tube of its own making. Lava tubes are a little like a subway, allowing molten rock to move from place to place underground. When the lava stops flowing from its source and the rest of it drains out, what's left? Long, hollow lava-tube caves that slope down the volcano. Sometimes these lava tubes collapse, forming "pit chains" like the long depressions seen here.

While most of the round depressions in this image are craters, the large one near bottom center may fool you. Because it doesn't have a blanket of ejected material around it, its probably just a larger type "pit chain" collapse.

The craters that we do see in this image have their own story to tell. Since most of them are small, they reveal that the exposed Martian surface is probably much younger than in other places. Older surfaces are typically pitted by larger craters. That’s because the planet was bombarded by much larger pieces of debris earlier in the formation of the solar system when more material was still "flying around." What this means is that the volcanic eruptions probably happened after the early stages of planetary bombardment, but not before all of the impacting material had a chance to make a lasting mark.

Voir l'image PIA03790: Pavonis Mons sur le site de la NASA.
| | PIA03790: Pavonis Mons PIA03823.jpg =

PIA03823: Syrtis Major


(Released 6 June 2002)

The Science
This image, located near the equator and 288W (72E), is near the southern edge of a low, broad volcanic feature called Syrtis Major. A close look at this image reveals a wrinkly texture that indicates a very rough surface that is associated with the lava flows that cover this region. On a larger scale, there are numerous bright streaks that trail topographic features such as craters. These bright streaks are in the wind shadows of the craters where dust that settles onto the surface is not as easily scoured away. It is important to note that these streaks are only bright in a relative sense to the surrounding image. Syrtis Major is one of the darkest regions on Mars and it is as dark as fresh basalt flows or dunes are on Earth.


The Story

Cool! It almost looks as if nature has "painted" comets on the surface of Mars, using craters as comet cores and dust as streaky tails. Of course, that's just an illusion. As in many areas of Mars, the wind is behind the creation of such fantastic landforms. The natural phenomenon seen here gives this particular surface of Mars a very dynamic, fast-moving, almost luminous "cosmic personality."

The bright, powdery-looking streaks of dust are in the "wind shadows" of craters, where dust that settles onto the surface is not as easily scoured away. That's because the wind moves across the land in a particular direction, and a raised surface like the rim of a crater "protects" dust from being completely blown away on the other side. The raised landforms basically act as a buffer. From the streaks seen above, you can tell the wind was blowing in a northeast to southwest direction.

Why are the streaks so bright? Because they contrast with the really dark underlying terrain in this volcanic area of Mars. Syrtis Major is one of the darkest regions on Mars because it is made of basalt. Basalt is typically dark gray or black, and forms when a certain type of molten lava cools. The meaning of the word basalt has been traced back to an ancient Ethiopian word "basal," which means "a rock from which you can obtain iron." That must have made it a very desired material with ancient Earth civilizations long ago.

Basalt is actually one of the most abundant types of rock found on Earth. Most of the volcanic islands in the ocean are made of basalt, including the large shield volcano of Mauna Loa, Hawaii, which is often compared to Martian shield volcanoes. Shield volcanoes don't have high, steep, mountain-like sides, but are instead low and broad humps upon the surface. They're created when highly fluid, molten-basalt flows spread out over wide areas. Over several millennia of basaltic layering upon layering, these volcanoes can reach massive sizes like the ones seen on Mars. You can see the wrinkly texture of dark lava flows (now hard and cool) in the above image beneath the brighter dust.

Voir l'image PIA03823: Syrtis Major sur le site de la NASA.
| | PIA03823: Syrtis Major PIA03797.jpg =

PIA03797: Hesperia Planum


(Released 16 May 2002)
The Science
This THEMIS visible image shows a close-up view of the ridged plains in Hesperia Planum. This region is the classic locality for martian surfaces that formed in the "middle ages" of martian history. The absolute age of these surfaces is not well known. However, using the abundance of impact craters, it is possible to determine that the Hesperian plains are younger than the ancient cratered terrains that dominate the southern hemisphere, and are older than low-lying plains of the northern hemisphere. In this image it is possible to see that this surface has a large number of 1-3 km diameter craters, indicating that this region is indeed very old and has subjected to a long period of bombardment. A large (80 km diameter) crater occurs just to the north (above) this image. The material that was thrown out onto the surface when the crater was formed ("crater ejecta") can be seen at the top of the THEMIS image. This ejecta material has been heavily eroded and modified since its formation, but there are hints of lobate flow features within the ejecta. Lobate ejecta deposits are thought to indicate that ice was present beneath the surface when the crater was formed, leading to these unusual lobate features. Many of the Hesperian plains are characterized by ridged surfaces. These ridges can be easily seen in the MOLA context image, and several can be seen cutting across the lower portion of the THEMIS image. These "wrinkle" ridges are thought to be the result of compression (squeezing) of the lavas that form these plains.

The Story
The rough-and-tumble terrain at the top of this image is made of material that was thrown out onto the surface when the massive, almost 50-mile-wide crater in the context image (see right) was blasted out of the surface. This ejected material shows longtime signs of erosion, but what's intriguing to geologists are residual signs of a curved, rounded flow pattern. Seeming to drip down the surface like a very thick, layered candle wax, the appearance of these lobes might mean that ice was present beneath the surface when the crater was formed. If dry dirt and rock alone had been ejected, we probably wouldn't see these flow-like features.

Note how tiny craters polka-dot the surface below this ejecta blanket. Most of them have very ragged, eroded edges. This terrain is clearly very old, and has been subjected to a whole lot of bombardment in its time. How old is it? Well, to understand, you need to know a little about the way planets form and evolve.

After a new star is formed, there's a lot of leftover dust and gas around it. Eventually, all of this material runs into each other and clumps together due to gravitational attraction. Eventually, these clumps of material grow so large that they become young planets. In a young solar system, there are many pieces of "stuff" still orbiting out there in space, and when they run into a rocky planet, they blast away at the surface, forming craters. Eventually, these leftover orbiting bodies have mostly all impacted. It's a good thing we're in an age where there's relatively little material left to run into our planet, though of course it still happens sometimes.

By looking at this surface in the Hesperian plains of Mars, we can see that it's old, but maybe not so ancient as the heavily cratered terrain dominating the southern hemisphere of Mars. . . and yet not so young as the low-lying plains in the northern hemisphere, which were smoothed over at some point late enough in Martian history to be almost crater-free thereafter. That puts the terrain in this image in the so-called "middle ages" of Martian history. By comparing all of the differently aged surfaces they can observe, geologists can piece together a record of Mars' geologic history.

Geologists can also make another comparison to understand how planets commonly form and evolve. You can see some ridges that cut across the bottom of the image (seen more clearly in the context image to the right). These "wrinkle" ridges are probably created when the lava that formed these plains was squeezed and compressed. Wrinkle ridges are found not only on Mars, but also on the moon, so that tells us it is not a unique process occurring in only one place in the solar system.

Voir l'image PIA03797: Hesperia Planum sur le site de la NASA.
| | PIA03797: Hesperia Planum PIA03907.jpg =

PIA03907: Pandora Fretum Crater


(Released 26 July 2002)
Another in a series of craters with unusual interior deposits, this THEMIS image shows an unnamed crater in the southern hemisphere Pandora Fretum region near the Hellas Basin. Craters with eroded layered deposits are quite common on Mars but the crusty textured domes in the center of the image make this crater more unusual. Looking vaguely like granitic intrusions, there erosional style is distinct from the rest of the interior deposit which shows a very obvious layered morphology. While it is unlikely that the domes are granite plutons, it is possible that they do represent some other shallowly emplaced magmatic intrusion. More likely still is that variations in induration of the layered deposit allow for variations in the erosional morphology. Note how the surface of the crater floor in the northernmost portion of the image has a texture similar to that of the domes. This may represent an incipient form of the erosion that has produced the domes but has not progressed as far. An analysis of other craters in the area may shed light on the origin of the domes.


Voir l'image PIA03907: Pandora Fretum Crater sur le site de la NASA.
| | PIA03907: Pandora Fretum Crater PIA03662.jpg =

PIA03662: Polar Ridges


Context image for PIA03662
Polar Ridges

This ridge system is located in the south polar region.

Image information: VIS instrument. Latitude -81.7N, Longitude 296.5E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03662: Polar Ridges sur le site de la NASA.
| | PIA03662: Polar Ridges PIA02013.jpg =

PIA02013: Gali Gullies


Context image for PIA02013
Gali Gullies

The gullies in this image of Gali Crater occur on the northfacing/sunfacing slope.

Image information: VIS instrument. Latitude -43.7N, Longitude 322.7E. 17 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA02013: Gali Gullies sur le site de la NASA.
| | PIA02013: Gali Gullies PIA03682.jpg =

PIA03682: Canyon Dust


Context image for PIA03682
Canyon Dust

These dust slides are located on the wall of Thithonium Chasma.

Image information: VIS instrument. Latitude -4.1N, Longitude 275.7E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03682: Canyon Dust sur le site de la NASA.
| | PIA03682: Canyon Dust PIA03812.jpg =

PIA03812: Maunder Crater


(Released 24 May 2002)
The Science
This image is of a portion of Maunder Crater located at about 49 S and 358 W (2 E). There are a number of interesting features in this image. The lower left portion of the image shows a series of barchan dunes that are traveling from right to left. The sand does not always form dunes as can be seen in the dark and diffuse areas surrounding the dune field. The other interesting item in this image are the gullies that can be seen streaming down from just beneath a number of sharp ridgelines in the upper portion of the image. These gullies were first seen by the MOC camera on the MGS spacecraft and it is though that they formed by groundwater leaking out of the rock layers on the walls of craters. The water runs down the slope and forms the fluvial features seen in the image. Other researchers think that these features could be formed by other fluids, such as CO2. These features are typically seen on south facing slopes in the southern hemisphere, though this image has gullies on north facing slopes as well.


The Story
Little black squigglies seem to worm their way down the left-hand side of this image. These land features are called barchan (crescent-shaped) dunes. Barchan dunes are found in sandy deserts on Earth, so it's no surprise the Martian wind makes them a common site on the red planet too. They were first named by a Russian scientist named Alexander von Middendorf, who studied the inland desert dunes of Turkistan.

The barchan dunes in this image occur in the basin of Maunder crater on Mars, and are traveling from right to left. The sand does not always form dunes, though, as can be seen in the dark areas of scattered sand surrounding the dune field.

Look for the streaming gullies that appear just beneath a number of sharp ridgelines in the upper portion of the image. These gullies were first discovered by the Mars Orbital Camera on the Mars Global Surveyor spacecraft. While most crater gullies are found on south-facing slopes in the southern hemisphere of Mars, you can see from this image that they occur on north-facing slopes as well. Comparing where gullies appear will help scientists understand more about the conditions under which they form.

Some researchers are really excited about gullies on Mars, because they believe these surface tracings might be signs that groundwater has leaked out of the rock layers on the walls of craters. If that's true, the water runs down the slope and forms the flow-like features seen in the image.

Scientists can get into some really hot debates, however. Other researchers think that these features could be formed by other fluids, such as carbon dioxide. No one knows for sure, so a lot of heads will be studiously bent over these images, continuing to study them closely. The neat thing about science is that the way you get closer to the truth is to hypothesize and then test, test, and test again. Debate for scientists is seen as an essential means of making sure that no wrong assumptions are made or that no important factor is left out. It's what keeps the field interesting and dynamic . . . and sometimes quite loud and entertaining!



Voir l'image PIA03812: Maunder Crater sur le site de la NASA.
| | PIA03812: Maunder Crater PIA03815.jpg =

PIA03815: Mangala Fossa


(Released 29 May 2002)
The Science
Today's THEMIS release captures Mangala Fossa. Mangala Fossa is a graben, which in geologic terminology translates into a long parallel to semi-parallel fracture or trough. Grabens are dropped or downthrown areas relative to the rocks on either side and these features are generally longer than they are wider. There are numerous dust devil trails seen in this image. In the lower portion of this image several dust devil tracks can be seen cutting across the upper surface then down the short stubby channel and finally back up and over to the adjacent upper surface. Some dust avalanche streaks on slopes are also visible. The rough material in the upper third of the image contains a portion of the rim of a 90 km diameter crater located in Daedalia Planum. The smooth crater floor has a graben (up to 7 km wide) and channel (2 km wide) incised into its surface. In the middle third and right of this image one can see ripples (possibly fossil dunes) on the crater floor material just above the graben. The floor of Mangala Fossa and the southern crater floor surface also have smaller linear ridges trending from the upper left to lower right. These linear ridges could be either erosional (yardangs) or depositional (dunes) landforms. The lower third of the scene contains a short stubby channel (near the right margin) and lava flow front (lower left). The floor of this channel is fairly smooth with some linear crevasses located along its course. One gets the impression that the channel floor is mantled with some type of indurated material that permits cracks to form in its surface.


The Story
In the Daedalia Plains on Mars, the rim of an old eroded crater rises up, a wreck of its former self (see context image at right). From the rough, choppy crater rim (top of the larger THEMIS image), the terrain descends to the almost smooth crater floor, gouged deeply by a trough, a channel, and the occasional dents of small, scattered craters.

The deep trough running from southwest to northeast across the middle of this image is called "Mangala Fossa." Mangala Fossa is a graben, a land feature created by tectonic processes that worked to create a depression in the landscape. This graben is a little more than 4 miles wide at its maximum, but like most grabens, is much longer than it is wide. You can see from the context image that it runs across much of the width of the crater.

Running southward from the graben (lower right-hand side of the larger THEMIS image) is a branching channel a little over a mile wide. The floor of this channel is fairly smooth with some linear crevasses along its course. These features suggest that the channel floor might be layered with some type of cemented material that permits cracks to form in its surface.

Between the rough crater rim and the depressed graben, tiny crackles on the otherwise smooth surface appear. They might be the ripples of fossil dunes, hardened remains from a more active time. The floor of Mangala Fossa and the southern crater floor surface also feature small lines that seem to crease the surface. We know that they are ridges on the surface, but how did they form? Were higher surfaces carved away in grooves by the wind and scouring sand, forming ridges called yardangs? Or were dunes deposited on the smooth, lower terrain? No one knows for sure.

Look closely for faint details as well. Do you see the subtle, scalloped pattern that laps at the lower left of the image, almost too muted to be seen? That's the sign of an ancient lava flow that stopped just there. And the shadowy gray streaks? Some are smudges caused by dust avalanches running down the slopes of the channel. Others are the tracks of dust devils that pass across the land, lifting and carrying away brighter dust to reveal the darker surface beneath. For a good example of a dust devil track, check out the faint gray line that cuts across the upper part of the channel, just below the point where it meets the graben.

Voir l'image PIA03815: Mangala Fossa sur le site de la NASA.
| | PIA03815: Mangala Fossa PIA03770.jpg =

PIA03770: Medusae Fossae Formation


(Released 16 April 2002)
The Science

This THEMIS visible image was acquired near 11° N, 159° W (201° E) and shows examples of the remarkable variations that can be seen in the erosion of the Medusae Fossae Formation. This Formation is a soft, easily eroded deposit that extends for nearly 1,000 km along the equator of Mars. In this region, like many others throughout the Medusae Fossae Formation, the surface has been eroded by the wind into a series of linear ridges called yardangs. These ridges generally point in direction of the prevailing winds that carved them, and demonstrate the power of martian winds to erode the landscape of Mars. The easily eroded nature of the Medusae Fossae Formation suggests that it is composed of weakly cemented particles, and was most likely formed by the deposition of wind-blown dust or volcanic ash. Within this single image it is possible to see differing amounts of erosion and stripping of layers in the Medusae Fossae Formation. Near the bottom (southern) edge of the image a rock layer with a relatively smooth upper surface covers much of the image. Moving upwards (north) in the image this layer becomes more and more eroded. At first there are isolated regions where the smooth unit has been eroded to produce sets of parallel ridges and knobs. Further north these linear knobs increase in number, and only small, isolated patches of the smooth upper surface remain. Finally, at the top of the image, even the ridges have been removed, exposing the remarkably smooth top of hard, resistant layer below. This sequence of layers with differing hardness and resistance to erosion is common on Earth and on Mars, and suggests significant variations in the physical properties, composition, particle size, and/or cementation of these martian layers. As is common throughout the Medusae Fossae Formation, very few impact craters are visible, indicating that the surface exposed is relatively young, and that the process of erosion may be active today.

The Story
"Yardang!"

Now, that may seem like a peculiar-sounding curse word, but nobody would get in trouble for using it. A yardang is one of the very cool-sounding words geologists use to describe long, irregular features like the ones seen in this image. Yardangs are grooved, furrowed ridges that form as the wind erodes away weakly cemented material in the region. Rippling across the surface, yardangs tell the story of how the powerful Martian wind carved the surface into such a gorgeous pattern over time. (Don't miss clicking on the above image to see a detailed view, in which the beauty and almost dance-like symmetry of the waving terrain pops out in highly compelling, three-dimensional texture.)

It may be easy to see which way the wind blows in this area, since these streamlined features point in the direction of prevailing winds. But how can geologists understand the various kinds of terrain seen here? First, they have to study the different patterns of erosion, looking closely at how the wind has stripped off certain layers and not others.

Want to be a geologist yourself? Start at the bottom of the image and scroll upward, and see how the relatively smooth, higher terrain toward the south gradually becomes more and more eroded. Moving up the image, at first you?ll see only a few, isolated regions of parallel ridges and knolls. Go a little farther north with your eyes (toward the center of the image), and you?ll see how these linear knobs really get going! Once you get to the top of the image, only patches of these grooved ridges remain, leaving an incredibly smooth, wind-scrubbed surface behind. You know this layer has to be made of pretty hard material, because it seems impervious to further erosion.

Geologists studying Mars can compare these Martian yardangs to examples found on Earth, such as those in the Lut desert of Iran. Humans have even been known to use the wind as their inspiration, sculpting the shape of yardangs themselves. The famous sphynx at Giza in Egypt is thought to be a yardang that's been whittled down a little more by ancient human chiselers.

Voir l'image PIA03770: Medusae Fossae Formation sur le site de la NASA.
| | PIA03770: Medusae Fossae Formation PIA03931.jpg =

PIA03931: Acidalia Planitia Channel Margin


The THEMIS VIS camera is capable of capturing color images of the Martian surface using five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from using multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

This false color image shows craters and a channel margin, in the region of southern Acidalia Planitia where Tiu and Ares Valles empty into the planitia. This image was collected during the Northern Spring season.

Image information: VIS instrument. Latitude 23.8, Longitude 327.5 East (32.5 West). 37 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03931: Acidalia Planitia Channel Margin sur le site de la NASA.
| | PIA03931: Acidalia Planitia Channel Margin PIA01396.jpg =

PIA01396: Funky Floors


Context image for PIA01396
Funky Floors

The material covering the floors of these two craters looks very different from the surrounds. The unusual markings of the floor material indicates that a volatile, such as ice, has affected the appearance of the surface.

Image information: VIS instrument. Latitude 29.7N, Longitude 54.3E. 19 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA01396: Funky Floors sur le site de la NASA.
| | PIA01396: Funky Floors PIA03291.jpg =

PIA03291: Frost-free Dunes


Context image for PIA03291
Frost-free Dunes

These dark dunes are frost covered for most of the year. As southern summer draws to a close, the dunes have been completely defrosted.

Image information: VIS instrument. Latitude -66.6N, Longitude 37.0E. 34 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03291: Frost-free Dunes sur le site de la NASA.
| | PIA03291: Frost-free Dunes PIA01876.jpg =

PIA01876: Polar Dunes


Context image for PIA01876
Polar Dunes

The dark sand dunes in this image are only a very small portion of the sand sea that surrounds the north polar cap of Mars.

Image information: VIS instrument. Latitude 80.7N, Longitude 311.5E. 20 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA01876: Polar Dunes sur le site de la NASA.
| | PIA01876: Polar Dunes PIA02170.jpg =

PIA02170: Apsus Vallis


Context image for PIA02170
Apsus Vallis

The channel in this image is called Apsus Vallis and it is located near the Elysium volcanic complex. Lava may have played a part in the formation of Apsus Vallis.

Image information: VIS instrument. Latitude 35.3N, Longitude 134.9E. 19 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA02170: Apsus Vallis sur le site de la NASA.
| | PIA02170: Apsus Vallis PIA03046.jpg =

PIA03046: Iani Chaos


Context image for PIA03046
Iani Chaos

This image shows a small portion of Iani Chaos. The brighter floor material is being covered by sand, probably eroded from the mesas of the Chaos.

Image information: VIS instrument. Latitude 1.7S, Longitude 341.6E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03046: Iani Chaos sur le site de la NASA.
| | PIA03046: Iani Chaos PIA03829.jpg =

PIA03829: Impact Crater with Peak


(Released 14 June 2002)

The Science
This THEMIS visible image shows a classic example of a martian impact crater with a central peak. Central peaks are common in large, fresh craters on both Mars and the Moon. This peak formed during the extremely high-energy impact cratering event. In many martian craters the central peak has been either eroded or buried by later sedimentary processes, so the presence of a peak in this crater indicates that the crater is relatively young and has experienced little degradation. Observations of large craters on the Earth and the Moon, as well as computer modeling of the impact process, show that the central peak contains material brought from deep beneath the surface. The material exposed in these peaks will provide an excellent opportunity to study the composition of the martian interior using THEMIS multi-spectral infrared observations. The ejecta material around the crater can is well preserved, again indicating relatively little modification of this landform since its initial creation. The inner walls of this approximately 18 km diameter crater show complex slumping that likely occurred during the impact event. Since that time there has been some downslope movement of material to form the small chutes and gullies that can be seen on the inner crater wall. Small (50-100 m) mega-ripples composed of mobile material can be seen on the floor of the crater. Much of this material may have come from the walls of the crater itself, or may have been blown into the crater by the wind.


The Story

When a meteor smacked into the surface of Mars with extremely high energy, pow! Not only did it punch an 11-mile-wide crater in the smoother terrain, it created a central peak in the middle of the crater. This peak forms kind of on the "rebound." You can see this same effect if you drop a single drop of milk into a glass of milk. With craters, in the heat and fury of the impact, some of the land material can even liquefy.

Central peaks like the one above are common in large, fresh craters on both Mars and the Moon. In many older Martian craters, however, the central peak has either been eroded or was buried by later deposits of sand, dust, and "dirt" on the terrain. With the pronounced, non-eroded peak in this crater, you can tell that it hasn't been around for a long time. Its youth is also apparent because of the ejected material around the crater that spreads out from it in an almost flame-or petal-like pattern with little evidence of erosion.

Observations of large craters on the Earth and the Moon, as well as computer modeling of the impact process, show that central peaks contain material brought from deep beneath the surface. The material exposed in these peaks will provide an excellent opportunity to study what the interior of Mars is made of. In addition to providing images of Mars like the one above, the THEMIS camera system has the capability to analyze the mineral composition of the surface. That means it will be able to look at this area and "see" both the composition of the top surface, as well as the exposed interior that is uplifted in the central peak. Stay tuned for more news later from this crater!

Until then, take a closer look at the walls of this crater. Particularly on the western side, you can see how whole portions of the wall have slid or "slumped" downward, probably sometime during the impact event. Since then, smaller amounts of material have slid downslope as well, forming small chutes and gullies that streak down the inner crater wall.

On the floor of the crater, you can also see small, mobile mega-ripples that extend up to a football field in length. (Look for the tiny, bright, white ripples especially to the north of the crater floor.) These ripples were probably created from material coming down from the wall of the crater or alternatively from dust and "dirt" that was blown into the crater by the wind.

Voir l'image PIA03829: Impact Crater with Peak sur le site de la NASA.
| | PIA03829: Impact Crater with Peak PIA03578.jpg =

PIA03578: Lucus Planum


Context image for PIA03578
Lucus Planum

While this image of Lucus Planum appears to be dominated by a winding channel, if you look closely you will see that the wind is eroding away the surface of the entire image and filling in the channel with material.

Image information: VIS instrument. Latitude 6.4S, Longitude 198.5E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03578: Lucus Planum sur le site de la NASA.
| | PIA03578: Lucus Planum PIA01871.jpg =

PIA01871: Landslide


Context image for PIA01871
Landslide

The two landslides in this image are located in Aeolis Mensae.

Image information: VIS instrument. Latitude -5.5N, Longitude 146.0E. 18 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA01871: Landslide sur le site de la NASA.
| | PIA01871: Landslide PIA03041.jpg =

PIA03041: Melas Chasma Landslide


Context image for PIA03041
Dunes in Darwin Crater

The landslide in the center of this image occurred in the Melas Chasma region of Valles Marineris.

Image information: VIS instrument. Latitude 11S, Longitude 292.6E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03041: Melas Chasma Landslide sur le site de la NASA.
| | PIA03041: Melas Chasma Landslide PIA01148.jpg =

PIA01148: Big Fracture


Context image for PIA01148
Big Fracture

This large fracture occurs on the lava flows of Ceraunius Tholus.

Image information: VIS instrument. Latitude 23.1N, Longitude 267.1E. 19 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA01148: Big Fracture sur le site de la NASA.
| | PIA01148: Big Fracture PIA02916.jpg =

PIA02916: Surface Drainage


Context image for PIA02916
Surface Drainage

The many small channels dissecting the top part of this image are drainage valleys. Most are draining downhill to the top [north] of the image.

Image information: VIS instrument. Latitude -1.6N, Longitude 301.1E. 18 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA02916: Surface Drainage sur le site de la NASA.
| | PIA02916: Surface Drainage PIA03483.jpg =

PIA03483: Daytime Infrared, Terra Sirenum

This 300-kilometer (186-mile) long daytime infrared image of Terra Sirenum, taken by the thermal emission imaging system on NASA's 2002 Mars Odyssey spacecraft, displays a wide variety of geologic features. The mottled floor and rim of Koval'skiy Crater is seen at the left (north) of the image. The bright and dark textures on the floor of Koval'skiy are due primarily to differences in the abundance of rocks, which are relatively cool (dark) during the day, whereas fine sand and dust are warmer (bright).

Lava flows, fracture systems up to 3.3 kilometers (two miles) wide, and numerous impact craters ranging in diameter from 300 meters (1000 feet) to several kilometers (or miles) are visible south of Koval'skiy. The dark rings around several craters are due to the presence of rocky material ejected from the crater. Other brightness differences show temperature variations due to the presence of warmer, Sun-facing and colder, shadowed slopes. A larger image taken by NASA's Viking Orbiter shows the location of the new image as an incised rectangle.


Terra Sirenum is located in the cratered highlands of the south. This image is centered near 33.5 degrees south, 141.5 degrees west, and was acquired on February 19, 2002 at about 3:15 p.m. martian time. North is toward the left of this image.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The thermal emission imaging system was provided by Arizona State University, Tempe. Lockheed Martin Astronautics, Denver, is the prime contractor for the project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

Voir l'image PIA03483: Daytime Infrared, Terra Sirenum sur le site de la NASA.

| | PIA03483: Daytime Infrared, Terra Sirenum PIA03794.jpg =

PIA03794: Reuyl Crater Dust Avalanches


(Released 13 May 2002)
The Science
The rugged, arcuate rim of the 90 km crater Reuyl dominates this THEMIS image. Reuyl crater is at the southern edge of a region known to be blanketed in thick dust based on its high albedo (brightness) and low thermal inertia values. This thick mantle of dust creates the appearance of snow covered mountains in the image. Like snow accumulation on Earth, Martian dust can become so thick that it eventually slides down the face of steep slopes, creating runaway avalanches of dust. In the center of this image about 1/3 of the way down is evidence of this phenomenon. A few dozen dark streaks can be seen on the bright, sunlit slopes of the crater rim. The narrow streaks extend downslope following the local topography in a manner very similar to snow avalanches on Earth. But unlike their terrestrial counterparts, no accumulation occurs at the bottom. The dust particles are so small that they are easily launched into the thin atmosphere where they remain suspended and ultimately blow away. The apparent darkness of the avalanche scars is due to the presence of relatively dark underlying material that becomes exposed following the passage of the avalanche. Over time, new dust deposition occurs, brightening the scars until they fade into the background. Although dark slope streaks had been observed in Viking mission images, a clear understanding of this dynamic phenomenon wasn't possible until the much higher resolution images from the Mars Global Surveyor MOC camera revealed the details. MOC images also showed that new avalanches have occurred during the time MGS has been in orbit. THEMIS images will allow additional mapping of their distribution and frequency, contributing new insights about Martian dust avalanches.

The Story
The stiff peaks in this image might remind you of the Alps here on Earth, but they really outline the choppy edge of a large Martian crater over 50 miles wide (seen in the context image at right). While these aren't the Alps, you will find quite a few avalanches. Avalanches of dust, however, not snow. Martian dust can become so thick in this area that it eventually slides down the steep slopes, creating runaway avalanches of dust.

No dedicated, Swiss-like avalanche rescue teams would be needed much on Mars, however. Unlike snow, the dust doesn't pile up and accumulate at the bottom. Instead, dust particles are so small that they get launched into the atmosphere where they remain suspended until . . . poof! They are blown away and distributed lightly elsewhere.

For evidence of past avalanches, check out the dark streaks running down the bright, sunlit slopes (western side of the peaks about 1/3 of the way down the image). These avalanche scars are dark because the underlying surface is not as bright as the removed dust. Eventually, new dust will settle over these scars, and the streaks will brighten until they fade into the background.

The neat thing is that we'll be able to see all of these changes happening over time. Our current two Mars orbiters (called Mars Global Surveyor and 2001 Mars Odyssey) are showing that avalanche action is happening right now, all of the time on Mars. For example, the camera on Mars Global Surveyor has already taken pictures of the Martian surface in some areas that showed no avalanches - the first time the picture was snapped, that is. The next time around, the camera took a picture of the same area, only voila! New streaks, meaning new avalanches!

That's why it can be so exciting to look at the Martian landscape over time to see how it changes. The THEMIS camera on Odyssey will continue to map out the places where the avalanches occur and how often. This information will really help scientists understand how dust is works to shape the terrain and to influence the Martian climate as it constantly swings into the atmosphere, falls down to the ground, and rises back up again.

Stay tuned to see if you too can pick out the changes over time!

Voir l'image PIA03794: Reuyl Crater Dust Avalanches sur le site de la NASA.
| | PIA03794: Reuyl Crater Dust Avalanches PIA03820.jpg =

PIA03820: Hebrus Valles


(Released 3 June 2002)

The Science

Hebrus Valles is located in the Elysium Planitia region of the northern lowlands of the planet. This image shows three sinuous tributaries of the channel system which carved up the surrounding plains. These individual tributaries are up to 3 km wide and have up to three terraces visible along their margins. These terraces may indicate separate flood events or may be the result of one flood plucking away at channel wall materials with varying strengths of resistance. It is not clear if these are separate rock layers or just the erosion of one type of material from rising and falling water levels. A streamlined island is visible in the lower third of the image. This feature indicates that flow was from the lower right to upper left in this region (the tail of the island points downstream). In places ripples, interpreted to be dunes, can also be seen along the interface of the channel floor with the walls. Smaller, fainter channels can also be seen scouring the plains, especially in the lower portion of this image. Other features of note in this image are the various inselbergs (isolated hills) located primarily in the upper portion of the image. The inselbergs are surrounded with aprons of material that was probably shed off of the hills by various processes of erosion.

The Story

Mars was once the scene of some major floods that rushed out upon the land, carving all kinds of channels. These signs of ancient flooding have always been exciting to scientists who want to understand the history of water on the planet. Water is important to understanding the climate and geological history of Mars, as well as whether life could ever have developed there.

While we can't tell much about the life question from pictures like this one, it does give some insights into the great flood itself. You can see three tributaries of a channel system that are up to two miles wide or so.

The really interesting thing is that you can see terraces of land that step down from the sides of the tributaries. How did they form? Was there one massive flood that swept through, eroding materials with varying strengths of resistance? Or was it several, separate floods? And what could the answer tell us about the types of rocks and materials in this region? No one knows if these are separate rock layers or just one type of material that has eroded from rising and falling water levels.

While these questions will continue to intrigue geologists, one thing that they can tell for sure is the direction the water flowed. Can you find the tear-drop shaped island in the now dry channel? On Earth, we see these islands created in rivers all the time. The "tail" of the island (the point on the teardrop) points downstream, so that means the flood rushed down the channel from the lower right to the upper left.

Since the flood, there is some rippling evidence on the channel floor that dunes may have formed. Smaller, fainter channels can also be seen scouring the plains, especially in the lower portion of this image. Other interesting features in this image are the various inselbergs (isolated hills) located primarily in the upper portion of the image. The inselbergs are surrounded with aprons of material that was probably shed off of the hills by various processes of erosion.

Voir l'image PIA03820: Hebrus Valles sur le site de la NASA.
| | PIA03820: Hebrus Valles PIA01307.jpg =

PIA01307: Ascraeus Mons


Context image for PIA01307
Ascraeus Mons

These lava flows and collapse features are part of Ascraeus Mons.

Image information: VIS instrument. Latitude 17.6N, Longitude 262.9E. 18 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA01307: Ascraeus Mons sur le site de la NASA.
| | PIA01307: Ascraeus Mons PIA03904.jpg =

PIA03904: Nepenthes Mensae


(Released 23 July 2002)
This image shows relatively smooth plains dotted with some craters and stepped mesas and knobs. This image is located near the highland-lowland boundary scarp in a region called Nepenthes Mensae. These eroded mesas and knobs commonly display a stepped topography. Some of these mesas and knobs have flat ledges partway up their slopes. These ledges are made of more resistant layers of rock and are the last remnants of layers that once were continuous across this entire region. Erosion has completely removed these layers in most places, leaving behind only the small isolated mesas and knobs. This one band IR (band 9 at 12.6 microns) image shows some minor bright and dark textures, which are primarily due to differences in the abundance of rocks on the surface. No significant variation in thermophysical properties of surface materials is visible in this image. The relative uniformity of the surface properties suggests that a process (or processes) has mantled or homogenized the surface layer. The mantling layer in this region is most likely dust. The relatively cool (dark) regions during the day are rocky or indurated materials whereas fine sand and dust are warmer (bright). The brightness levels show daytime surface temperatures, which range from about minus 39 degrees to minus 17 degrees Celsius (minus 38 degrees to plus 1 degrees Fahrenheit). Many of the temperature variations are due to slope effects, with sun-facing slopes warmer than shaded slopes. The dark rings around several of the craters are due to the presence of rocky (cool) material ejected from the crater (best seen near bottom of image).

Daytime temperature variations are produced by a combination of topographic (solar heating) and thermophysical (thermal inertia and albedo) effects. The surface morphologies seen in THEMIS daytime IR images due to topographic heating are similar to those seen in previous imagery and MOLA topography.


Voir l'image PIA03904: Nepenthes Mensae sur le site de la NASA.
| | PIA03904: Nepenthes Mensae PIA03200.jpg =

PIA03200: Iani Chaos


Context image for PIA03200
Iani Chaos

This VIS image of Iani Chaos shows the layered deposit that occurs on the floor. It appears that the layers were deposited after the chaos was formed.

Image information: VIS instrument. Latitude 2.3S, Longitude 342.3E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03200: Iani Chaos sur le site de la NASA.
| | PIA03200: Iani Chaos PIA03739.jpg =

PIA03739: Martian Highlands at Night in Infrared

This nighttime temperature image from the camera system on NASA's Mars Odyssey spacecraft shows the ancient, heavily cratered surface of the highlands between Isidis and Elysium Planitia. The image is entered near 9 degrees north latitude, 109 degrees east longitude, and covers an area approximately 32 kilometers (20 miles) wide by 120 kilometers (75 miles) long. The bright "splashes" extending outward from the three large craters are the remnants of the rocky material thrown out when the impact occurred. The nighttime temperature differences are due primarily to differences in the abundance of rocky materials that retain their heat at night and stay relatively warm. Fine grained dust and sand cool off more rapidly at night. The circular rims of the craters in this region are warm at night, showing that rocks are still present on the steep walls inside the craters. The "splash" ejecta patterns are also warmer than their surroundings, and are covered by material that was blasted out when the craters formed. The temperatures in this scene vary from approximately -105 degrees Celsius (-157 degrees Fahrenheit)(darkest) to -75 degrees Celsius (-103 degrees Fahrenheit) (lightest). This image was acquired using the instrument's infrared Band 9, centered at 12.6 micrometers. North is toward the left in this image.

The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the 2001 Mars Odyssey mission for NASA's Office of Space Science in Washington, D.C. Investigators at Arizona State University in Tempe, the University of Arizona in Tucson and NASA's Johnson Space Center, Houston, operate the science instruments. Additional science partners are located at the Russian Aviation and Space Agency and at Los Alamos National Laboratories, New Mexico. Lockheed Martin Astronautics, Denver, is the prime contractor for the project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL.

Voir l'image PIA03739: Martian Highlands at Night in Infrared sur le site de la NASA.

| | PIA03739: Martian Highlands at Night in Infrared PIA03903.jpg =

PIA03903: Frosted Sand Dunes


(Released 22 July 2002)
This image, located near 79.6 N and 142.7 E, displays sand dunes covered in CO2 frost. This is a region of Mars that contains circumpolar sand seas. The large sand deposits and the high winds that circulate around the pole allow for the formation of a huge dune field that surrounds the north polar cap. As the northern hemisphere progresses towards winter, CO2 frost condenses out of the atmosphere and covers the dunes. During northern spring, the CO2 sublimates and the dunes are once again uncovered and active. This image was taken as northern spring progresses and the crests of the dunes are just starting to be exposed. The dark dune material absorbs sunlight more efficiently than the brighter frost, aiding in the sublimation of the remaining frost.

Voir l'image PIA03903: Frosted Sand Dunes sur le site de la NASA.
| | PIA03903: Frosted Sand Dunes PIA01878.jpg =

PIA01878: Inuvik Crater


Context image for PIA01878
Inuvik Crater

This image of Inuvik Crater was taken during northern spring. Sand dunes cover the floor of the crater and are migrating up the rim and out onto the plains.

Image information: VIS instrument. Latitude 78.6N, Longitude 330.9E. 20 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA01878: Inuvik Crater sur le site de la NASA.
| | PIA01878: Inuvik Crater PIA03793.jpg =

PIA03793: Wrinkle Ridges and Young Fresh Crater


(Released 10 May 2002)
The Science
Wrinkle ridges are a very common landform on Mars, Mercury, Venus, and the Moon. These ridges are linear to arcuate asymmetric topographic highs commonly found on smooth plains. The origin of wrinkle ridges is not certain and two leading hypotheses have been put forth by scientists over the past 40 years. The volcanic model calls for the extrusion of high viscosity lavas along linear conduits. This thick lava accumulated over these conduits and formed the ridges. The other model is tectonic and advocates that the ridges are formed by compressional faulting and folding. Today's THEMIS image is of the ridged plains of Lunae Planum located between Kasei Valles and Valles Marineris in the northern hemisphere of the planet. Wrinkle ridges are found mostly along the eastern side of the image. The broadest wrinkle ridges in this image are up to 2 km wide. A 3 km diameter young fresh crater is located near the bottom of the image. The crater's ejecta blanket is also clearly seen surrounding the sharp well-defined crater rim. These features are indicative of a very young crater that has not been subjected to erosional processes.

The Story
The great thing about the solar system is that planets are both alike and different. They're all foreign enough to be mysterious and intriguing, and yet familiar enough to be seen as planetary "cousins." By comparing them, we can learn a lot about how planets form and then evolve geologically over time.

Crinkled over smooth plains, the long, wavy raised landforms seen here are called "wrinkle ridges," and they've been found on Mars, Mercury, Venus, and the Moon - that is, on rocky bodies that are a part of our inner solar system. We know from this observation that planets (and large-enough moons) follow similar processes. What we don't know for sure is HOW these processes work.

Scientists have been trying to understand how wrinkle ridges form for 40 years, and they still haven't reached a conclusion. That's the excitement of science, as the scientific hypotheses and debates continue. Geologists have narrowed down the possibilities to two likely candidates. On the one hand, a volcano could have sent thick streams of lava out that later hardened to form the ridges. On the other, a crushing tectonic force could have pushed the land together, causing it to fault and fold upward. Whichever theory is true, we do know the planet has been subjected to some tremendously active geologic shaping in its past.

Don't miss the nearly perfect crater near the bottom of the image. Its sharp crater rim tells us that it is probably pretty young as craters go, because erosion hasn't dulled its edges. Bright material also seems to form a dusty, hazy halo around it. That's all of the material that was blasted out of the crater and sprinkled back down around it in an "ejecta blanket." Seeing it so clearly, seemingly untouched by erosion, also indicates the crater's relative youth.

Voir l'image PIA03793: Wrinkle Ridges and Young Fresh Crater sur le site de la NASA.
| | PIA03793: Wrinkle Ridges and Young Fresh Crater PIA03827.jpg =

PIA03827: Northwestern Branch of Mangala Vallis


(Released 12 June 2002)

The Science
One of the many branches of the Mangala Vallis channel system is seen in this image. The water that likely carved the channels emerged from a huge graben or fracture almost 1000 km to the south. The THEMIS image shows where one of the channels exits the cratered highlands terrain onto the lowland plains. A bright scarp marks the transition between the two terrain types and demonstrates that in this location the highlands terrain is being eroded back. Note how the floor of the main channel appears to be at the same level as the lowland terrain, suggestive of a base level where erosion is no longer effective. Most of the steep slope faces in the image display darker slope streaks that are thought to be dust avalanche scars and indicate that a relatively thick mantle of dust is present in this region. Wind-sculpted ridges known as yardangs cover many of the surfaces throughout the area as shown by images from the Mars Global Surveyor mission. Most of them are at the limit of resolution in the THEMIS image but some are evident on the floor of the main channel at the point at which a smaller side channel enters. In this location they appear to extend right up to the base of the channel wall, giving the appearance that they are emerging from underneath the thick pile of material into which the channel is eroded. This suggests a geologic history in which a preexisting landscape of eroded yardangs was covered over by a thick pile of younger material that is now eroding back down to the original level. Alternatively, it is possible that the yardangs formed more recently at the abrupt transition between the channel floor and wall. More analysis is necessary to sort out the story.


The Story

This channel system is named "Mangala," the word for Mars in Sanskrit, a language of the Hindus of India that goes back more than 4,000 years, with written literature almost as long. Great epic tales have been written in this language, and Odyssey is continuing in the spirit of those adventures with its daily discoveries.

Long ago, many thousands of years before Sanskrit was spoken on the Earth, a rush of water emerged from a giant fracture in the Martian land, carving the channels seen above. Since this fracture is located almost 600 miles to the south of this picture, you can only image the force of the flood. Today, the only real movement is the tired fall of dust avalanches down the channel slopes, which leave long dark trickles down the side. It's a dry, dusty world now, with a thick layer of dust everywhere.

This image was taken at a place of transformation on Mars, where the cratered highlands meet the smooth, lowland plains. You can see that especially well in the context image to the right. Erosion is working tirelessly over time to bring the highlands level with the lowland terrain, but that will take eons more time into the future. Erosion may be "deadly" to geological features, but it doesn't always happen quickly.

If you want to look at one thing close up in this image, click on the above image and check out the floor of the main channel, just at the point where a smaller side channel enters (about a third of the way up). What you'll find are wind-sculpted ridges known as yardangs (some of them are almost triangular). What's interesting about these ridges is that they seem to have eroded long ago, then were covered by a thick pile of younger material, which is now itself eroding back, uncovering them once again.

Yardangs are pretty common in this region of Mars, but if you have trouble finding them in many THEMIS images, don't worry, you're not alone. That's because the THEMIS camera is designed to take pictures of a larger area than its sister camera on the Mars Global Surveyor spacecraft, so some smaller yardangs are barely detectable. The Mars Orbital Camera, however, takes more detailed pictures of a narrower slice of the Martian landscape, and has shown many yardangs in the area. The great thing is that the THEMIS and MOC cameras are very complementary to one another. It's important to get the larger context of the terrain, as well as the sharp details of a tinier area for the greatest understanding possible.

For example, while the yardangs in this image seem to be emerging from a blanket of younger material, it's also possible that they formed more recently at the abrupt transition between the channel floor and the wall. More analysis - and more pictures from both cameras! - will be needed to sort out the story.

Voir l'image PIA03827: Northwestern Branch of Mangala Vallis sur le site de la NASA.
| | PIA03827: Northwestern Branch of Mangala Vallis PIA01869.jpg =

PIA01869: Northern Dune Field


Context image for PIA01869
Northern Dune Field

This image shows part of the large dune field (or erg) that exists surrounding the north polar ice cap.

Image information: VIS instrument. Latitude 83.8N, Longitude 227.8E. 40 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA01869: Northern Dune Field sur le site de la NASA.
| | PIA01869: Northern Dune Field PIA03677.jpg =

PIA03677: Dust Slides


Context image for PIA03677
Linear Clouds

Dust slides are common in the dust covered region called Lycus Sulci. A large fracture is also visible in this image.

Image information: VIS instrument. Latitude 28.1N, Longitude 226.3E. 18 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03677: Dust Slides sur le site de la NASA.
| | PIA03677: Dust Slides PIA03912.jpg =

PIA03912: Frosted Crater


(Released 2 August 2002)
This image, located near 70.6 N and 102.95 E, displays a frosted crater in the Martian northern hemisphere. This image was taken during the northern spring as the CO2 ice cap starts to sublimate and recede. Exposures of the underlying surface are prominent around topographic features because of the exposure they provide. Features that are more exposed to the relatively warm air will be sublimated away more quickly. South facing slopes in the northern hemisphere are also exposed to more sunlight, which also helps to sublimate the frost. This is why the north rim of the large crater has more exposures of the relatively dark underlying material than the southern (north facing) wall. There are also what appears to be small slides of material on the crater walls. This may be sand that becomes unstable as the frost cover thins.


Voir l'image PIA03912: Frosted Crater sur le site de la NASA.
| | PIA03912: Frosted Crater PIA03025.jpg =

PIA03025: Channeled Winds


Context image for PIA03025
Channeled Winds

This low resolution VIS image shows a large portion of etched terrain near the south pole of Mars.

Image information: VIS instrument. Latitude 10S, Longitude 37.2E. 18 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03025: Channeled Winds sur le site de la NASA.
| | PIA03025: Channeled Winds PIA03782.jpg =

PIA03782: Knobby terrain in Northern Arabia Terra


(Released 25 April 2002)
The Science
This THEMIS visible image shows a region in northern Arabia Terra near 44° N, 322° W (38° E). Knobby or "scabby" plains units that mantle and modify a pre-existing cratered surface dominate the unusual landscape in this region. Several large (5-8 km diameter) impact craters seen in the upper left of the image have been extensively modified since their initial formation. The rims of these craters can still be seen, but the ejecta deposits and the surrounding plains have been buried by a layer of material. This mantling layer has itself been modified to produce a pitted, knobby surface. Circular depressions of all sizes, presumably the remnants of impact craters, are filled with smooth deposits. In some places large regions have been covered by this smooth material; an example can be seen in the lower right portion of this image. In many cases the impact craters have been extensively modified prior to their being filled. This modification indicates an erosion process that has removed material from the walls to produce shapes that vary from circular with crisp rims, to circular with no rims, to oblong and elliptical forms, and finally to irregular shapes whose initial circular outline can barely be detected. The slope of the channel at the top of the image has an unusual deposit of material that occurs preferentially on the cold, north-facing slope. Similar deposits are seen frequently at mid-northern and southern latitudes on Mars, and have a characteristic, rounded boundary that typically occurs at approximately the same distance below the ridge crest. It has been suggested that these deposits once draped the entire surface and have since been removed from all but the cold north-facing slopes. The presence and removal of ground ice may play an important role in the formation of this layer, as well as the knobby terrain and unusual features seen in this image.

The StoryThere's no way these impact craters are in their original, pristine shape. Check out their strange deformities and register the geological gross-out factor of all the "scabs" upon the land. You can still see the rims of craters in this savaged land, but an aggressive layer of material once spread out across it, burying the ejected material and all the surrounding plains. This cloaking layer didn't win the battle of dominance, however, as it too has been battered over time, producing the pitted, knobby surface seen today.

Only a few smooth deposits in the area are spared from the scabby, scarred look of the long barraged (see lower right portion of the image). Circular depressions, the probable remains of impact craters, are filled with this smooth material. Some were already well eroded prior to being filled, with material removed from their walls used to sculpt the varying shapes.

The dark, shadowed channel at the top of this image has an unusual deposit of material on its cold, north-facing slope. Since this material is found elsewhere on Mars, at approximately the same distance below the ridge crest, could it have draped the entire surface of Mars long ago? Why has it been lost from all but the northern slopes? Could ice in the ground play a role in forming and preserving this layer? And did it craft the knobby terrain and other strange features in this area?

These are the kinds of questions geologists are asking. As this image proves, the more you discover, the more questions you have. That's what keeps exploration so exciting.

Voir l'image PIA03782: Knobby terrain in Northern Arabia Terra sur le site de la NASA.
| | PIA03782: Knobby terrain in Northern Arabia Terra PIA03836.jpg =

PIA03836: Tantalus Fossae


(Released 25 June 2002)

The Science
Tantalus Fossae is a set of long valleys on the eastern side of Alba Patera. These valleys are referred to as grabens and are formed by extension of the crust and faulting. When large amounts of pressure or tension are applied to rocks on timescales that are fast enough that the rock cannot respond by deforming, the rock breaks along faults. In the case of a graben, two parallel faults are formed by extension of the crust and the rock in between the faults drops downward into the space created by the extension. Numerous sets of grabens are visible in this THEMIS image, trending from north-northeast to south-southwest. Because the faults defining the graben are formed parallel to the direction of the applied stress, we know that extensional forces were pulling the crust apart in the west-northwest/east-southeast direction. The large number of grabens around Alba Patera is generally believed to be the result of extensional forces associated with the uplift of Alba Patera. Also visible in this image are a series of linearly aligned pits, called a pit chain. The pits are not the result of impact cratering, but are similar to sinkholes on Earth. Sinkholes are typically formed by the removal of rock (commonly limestone) underground by groundwater -- when enough rock is removed, the overlying rock becomes too heavy to be supported, and it collapses, forming a pit. Unlike sinkholes, however, the pit chains near Alba Patera were likely formed when empty underground lava tubes collapsed, accounting for the presence and alignment of many pits. Numerous channel features are also observed in the image, and follow the local topographic slope, which is downhill to the east-southeast. One of these, a long channel in the center of the image, nicely demonstrates the complex relations possible between geologic features. The geologist's rule of superposition says that a feature on top of (superposing) another feature, or cutting across another feature is younger than the feature it covers or cuts. In one location, the channel cuts across the somewhat subdued fault defining a graben (near the right side of the image), indicating that the channel was carved after the graben was formed. But in other places (near the center of the image), the channel is clearly cut by a large fault defining one of the grabens, indicating that some faulting was occurring after the channel was carved. These relationships can be observed throughout this image. By mapping out superposition relationships in detail, geologists can establish a complex sequence of events that occurred long ago.

The Story
The first thing that catches your eye in the image above is a string of round pits that are strewn dramatically on the surface. Although they may look like craters, nothing came hurtling in from the sky to make them. Instead, collapses along a lava tube have created this long dotted line on the Martian surface. The lava tube, a hollow feature beneath the surface, can't always withstand the weight from above, and so collapses in places, forming pits like the ones seen here.

Throughout the rest of the image are a series of depressed valleys known as grabens that run roughly from the northeast to the southwest. They formed when the crust of the Martian surface was stretched so fast that it broke along faults. When that happened, the rock in between fell downward into the space created by the extension, creating the long subtle streaks of lowered terrain. They were probably created when Alba Patera, the shield volcano of this area, was elevated or "uplifted" through tectonic forces.

This area of long valleys is named after Tantalus, a king of ancient Lydia who, according to legend, betrayed the gods and was sent to Hades. In this subterranean place, he was forced to stand in water up to his chin underneath the branches of fruit trees. Every time he tried to drink, the water would recede, and every time he tried to eat, the boughs would move the fruit just out of reach. You can easily see where the word "tantalize" comes from.

Scientists are intrigued so much by the history of this area that they seek to understand its elusive past. Luckily, their interests are much more in reach than those of poor Tantalus. A number of channels in this image (running downhill from the west-northwest to the east-southeast) help them understand the chain of events that worked to create the compelling features in this region.

Take a look at the channels close-up and see if you can tell whether the channels or the grabens happened first. A rule of thumb is that if one feature is on top of another or cuts across it, it is younger than the feature it covers or cuts. One of the channels in the center of the image is great to study. Toward the right side of the image, the channel cuts across a fault, indicating it formed before the graben. Follow the channel westward, however, and you'll see that a large fault cuts the channel, indicating that this graben formed after the channel. That probably means this criss-crossed region went through a seeming eternity of torture itself, as the land kept tearing and stretching, as channels were carved and recarved, as lava tubes formed and then finally collapsed, only to have their walls erode in further streaks as well.

Voir l'image PIA03836: Tantalus Fossae sur le site de la NASA.
| | PIA03836: Tantalus Fossae PIA02889.jpg =

PIA02889: Windstreaks


Context image for PIA02889
Windstreaks

These windstreaks are located in the southern part of Syrtis major.

Image information: VIS instrument. Latitude 0.1N, Longitude 65.0E. 18 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA02889: Windstreaks sur le site de la NASA.
| | PIA02889: Windstreaks PIA03785.jpg =

PIA03785: Cratered terrain in Terra Meridiani


(Released 30 April 2002)
The Science
This THEMIS visible image shows a region in Terra Meridiani near -12° S, 358° W (2° E). An old, heavily degraded channel can be seen from the lower (southern) portion of the image toward the top. This channel appears to terminate abruptly at the rim of a 10 km diameter crater. This apparent "superposition" of the crater on top of the channel suggests that the impact crater was created after the channel was formed. This crater has two 3-km sized blocks of material that have slumped off from the lower left segment of the original crater rim. These immense blocks must have moved as a single unit because the rock layers that can be seen in the original wall of the crater can still be seen in these detached blocks. The walls of several craters in this image show vague hints of possible gully formation at the bottom of pronounced rock layers, with the suggestion of alcoves above the individual gullies. Well-developed gullies that were imaged by the Mars Orbiter Camera (MOC) on Mars Global Surveyor have been suggested to form by seepage and runoff of a fluid. The MOC has observed these gullies in numerous craters and channels further south, but they are uncommon at latitudes this close to the equator. Several sections of the crater walls appear to have ridges and troughs formed by the dry avalanche of loose rock, and a similar process of dry avalanche may account for the gullies seen in this THEMIS image. Patches of lighter material, possibly small dunes ripples, can be seen in several places throughout this image.

The Story
When the walls come tumbling down! Take a closer look at the bright linear ridges within a deep crater near the center of this image (bottom, left-hand side of the crater). Almost 2 miles long, these chunks of material slumped off the crater side in one fell swoop. Phoozhj! Down they came as one massive unit. You can tell, because the rock layers seen in the original wall of the crater are also still there in the detached material as well.

Instability in the craters doesn't stop there. Other ridges and troughs in the large craters were probably formed by smaller avalanches of loose rock, but . . . what about those gullies? Were they caused by small, dry avalanches too, or could they possibly have been formed by some kind of liquid running down the walls?

In the grand search for possible signs of water on the red planet, gullies found in craters around Mars have been a source of speculation and great interest. The walls of several craters in this image show vague hints of possible gully formation, and features like "alcoves" above the individual gullies suggest a possible "formation by fluid." And yet, gullies are usually found in the south of Mars, not along the equatorial region where these craters are located. So, . . . who knows? This area will take a lot of further study.

A long, snaky channel also winds its way up from the bottom of this image, only to be obliterated in its path by the large crater pits that came later. Eroded and old, the channel is far less dramatic than the large impact craters, but leaves a record of more ancient processes on Mars.

Dappled in light and dark terrain, the texture of this cratered region of Mars is actually quite complex, especially when you look at the close-up image. Beyond the predominant craters, a smattering of smaller, shallower craters dot the surface, and signs of bright dunes can be found as well.

Voir l'image PIA03785: Cratered terrain in Terra Meridiani sur le site de la NASA.
| | PIA03785: Cratered terrain in Terra Meridiani PIA01316.jpg =

PIA01316: Lycus Sulci


Context image for PIA01316
Lycus Sulci

Lycus Sulci is a complex area of ridges and valleys that surrounds the northern and western margins of Olympus Mons. How it formed is unknown.

Image information: VIS instrument. Latitude 20.7N, Longitude 211.3E. 18 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA01316: Lycus Sulci sur le site de la NASA.
| | PIA01316: Lycus Sulci PIA03831.jpg =

PIA03831: Ariadnes Colles Chaos


(Released 18 June 2002)

Among the many varied landscapes on Mars the term chaos is applied to those places that have a jumbled, blocky appearance. Most of the better known chaotic terrain occurs in the northern hemisphere but there are other occurrences in the southern hemisphere, three of which are centered on ~180 degrees west longitude. Ariadnes Colles, Atlantis, and Gorgonum Chaos all share similar features: relatively bright, irregularly shaped knobs and mesas that rise above a dark, sand-covered, hummocky floor. Close inspection of this THEMIS image shows that the darker material tends to lap up to the base of the knobs and stops where the slopes are steep. On some of the lowest knobs, the dark material appears to overtop them. The knobs themselves are highly eroded, many having a pitted appearance. Images from the camera on Mars Global Surveyor clearly show that the dark material is sand, based on its mantling appearance and the presence of dunes. It looks as though the material that composes the knobs was probably a continuous layer that was subsequently heavily eroded. While it is likely that the dark sand is responsible for some of the erosion it is also possible that the this landscape was eroded by some other process and the sand was emplaced at a later time.


Voir l'image PIA03831: Ariadnes Colles Chaos sur le site de la NASA.
| | PIA03831: Ariadnes Colles Chaos PIA02030.jpg =

PIA02030: Double Vent


Context image for PIA02030
Double Vent

Two volcanic vents have erupted material to form this small volcano just south of Pavonis Mons.

Image information: VIS instrument. Latitude -4.0N, Longitude 246.7E. 18 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA02030: Double Vent sur le site de la NASA.
| | PIA02030: Double Vent PIA01944.jpg =

PIA01944: Sirenum Fossae


Context image for PIA01944
Sirenum Fossae

These fractures and graben are part of Sirenum Fossae.

Image information: VIS instrument. Latitude -28.6N, Longitude 213.8E. 17 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA01944: Sirenum Fossae sur le site de la NASA.
| | PIA01944: Sirenum Fossae PIA02042.jpg =

PIA02042: Sabis Vallis


Context image for PIA02042
Sabis Vallis

The many interconnected channels in this image are all part of Sabis Vallis.

Image information: VIS instrument. Latitude -6.0N, Longitude 209.3E. 18 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA02042: Sabis Vallis sur le site de la NASA.
| | PIA02042: Sabis Vallis PIA03843.jpg =

PIA03843: Amazonis Planitia


(Released 5 July 2002)
This is an image of a crater within part of Amazonis Planitia, located at 22.9N, 152.5W. This image features a number of common features exhibited by Martian craters. The crater is sufficiently large to exhibit a central peak that is seen in the upper right hand corner if the image. Also apparent is the slump blocks on the inside of the crater walls. When the crater was first formed, the crater walls were unstable and subsequently formed a series of landslides over time that formed the hummocky terrain just inside the present crater wall. While these cratering features are common to craters formed on other planetary bodies, such as the moon, the ejecta blanket surrounding the crater displays a morphology that is more unique to Mars. The lobate morphology implies that the ejecta blanket was emplaced in an almost fluid fashion rather than the traditional ballistic ejecta emplacement. This crater morphology occurs on Mars where water ice is suspected to be present just beneath the surface. The impact that created the crater would have enough energy to melt large amounts of water that could form the mud or debris flows that characterize the ejecta morphology that is seen in this image.


Voir l'image PIA03843: Amazonis Planitia sur le site de la NASA.
| | PIA03843: Amazonis Planitia PIA03081.jpg =

PIA03081: Gullies


Context image for PIA03081
Gullies

The gullies at the top of the image occur on the rim of an unnamed crater on the larger rim of the Argyre Basin. It has been postulated that this type of gully may form due to the melting of a snow/ice cover.

Image information: VIS instrument. Latitude 52.4S, Longitude 304.5E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03081: Gullies sur le site de la NASA.
| | PIA03081: Gullies PIA03844.jpg =

PIA03844: Deuteronilus Mensae


(Released 8 July 2002)
This THEMIS visible image shows several "fretted" channels within Deuteronilus Mensae in the northern plains of Mars. These linear troughs appear to have been extensively modified by surficial processes. Their floors contain knobby or "scabby" materials that have been modified to produce a pitted, knobby surface. This type of surface is common in the northern highlands of Mars, and its location and pitted texture has been suggested to indicate that these materials once contained ice that has since been removed to form the pits (devolatization). Many of the sloping surfaces in this region image have unusual deposits of material that occur preferentially on the cold, north-facing slopes. These deposits are seen frequently at mid-northern and southern latitudes, and have a distinct, rounded boundary that typically occurs at approximately the same distance below the ridge crest. It has been suggested that these deposits once draped the entire surface and have since been removed from all but the north-facing slopes. In some regions these deposits have ridges that parallel the cliff, suggestive of downslope movement and compression, possibly aided by ice. In some areas these slope deposits are darker than the material on the floor of the channel, and appear to sit on top of the pitted channel-floor materials. This relationship indicates that the slope materials have slightly different properties, leading to their darker tone, and are younger (and thus on top of) the channel floors. The presence of water ice in the surface in this area is a likely possibility to account for many of the features observed. This ice may still be present near the surface and this region may still be undergoing modification today.


Voir l'image PIA03844: Deuteronilus Mensae sur le site de la NASA.
| | PIA03844: Deuteronilus Mensae PIA01867.jpg =

PIA01867: Polar Dunes


Context image for PIA01867
Polar Dunes

This field of sand dunes occurs within Chasma Borealis.

Image information: VIS instrument. Latitude 84.7N, Longitude 0.4E. 20 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA01867: Polar Dunes sur le site de la NASA.
| | PIA01867: Polar Dunes PIA03086.jpg =

PIA03086: Dust on the Move


Context image for PIA03086
Fractured Surface

The dust avalanches found on this crater rim have exposed darker rocky material on an otherwise dust coated slope. This unnamed crater is located east of Schiaparelli Crater.

Image information: VIS instrument. Latitude 2.3N, Longitude 26.6E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03086: Dust on the Move sur le site de la NASA.
| | PIA03086: Dust on the Move PIA03838.jpg =

PIA03838: Candor Chasma


(Released 27 June 2002)
The Science

This THEMIS visible image shows the effects of erosion on a beautiful sequence of dramatically layered rocks within Candor Chasma, which is part of the Valles Marineris. These layers were initially deposited within Candor, and have subsequently been eroded by a variety of processes, including wind and downslope motion due to gravity. The effect of erosion is manifest differently in the different layers and at different locations within the layered material. For example, the upper portion of the Candor deposit seen in the lower one-third of the image appears more intact, whereas downslope there is pronounced fluting to create produced "spur and gully" slopes. Relatively dark materials are seen throughout the image and appear to mantle select areas of the layered deposits. When seen in other areas by THEMIS, and at higher resolution by the Mars Global Surveyor camera, these dark materials often form sand dunes. The dark mantling material in Candor is likely dark sand as well. Several particularly dark patches can be seen near the left (western) edge of the image, approximately one quarter of the way up from the bottom of the image. Very few impact craters of any size can be seen in this image, indicating that the erosion and transport of material is occurring at a relatively rapid rate, so that any craters that form are rapidly buried or eroded.

The Story
The smooth, triangular shape near the center of this image is the plateau of a canyon, with walls that dramatically descend on either side. This canyon is named Chasma, which means "blaze" or "white" in Latin. The lighter, brighter material of the southern canyon wall displays erosional streaks that almost do happen to look like a white blaze.

Toward the bottom left of the image, you can see how the relatively brighter material from the top has been carried down to the bottom. Notice that the upper, grayer part of the southern canyon walls don't seem to have the same erosional flutes as the brighter material just below it. By looking at such differences on the same canyon wall, geologists can begin to understand the kinds of materials that make up each layer of the canyon wall, and how resistant each is to erosion.

No matter what part of the canyon you look at, erosion has created the beautiful sequence of layered rocks within Candor. Sometimes it's the wind that acts, and sometimes gravity, which pulls material from the upper parts of the canyon downslope. Be sure to click on the above image for a close-up view of all of the subtle layers and ripples.

Look also for some dark, almost black patches (bottom left, about a quarter of the way up). These dark splotches are most likely made of sand. In fact, much of the darker areas seen in this image are probably made of sand. The sand often forms in dunes, as both THEMIS and the higher resolution camera on Mars Global Surveyor, Odyssey's sister orbiter, have shown.

With all of the wind and downslope erosion, this area is fairly active geologically. You can tell because there are very few impact craters of any size to be seen. That means material is being transported at a rate that's rapid enough to bury or erode any craters that do form.

Candor Chasma is part of Valles Marineris, the large canyon system that slices across a large part of the red planet. If Valles Marineris were located on Earth, it would stretch all the way from the west coast to the east coast of the United States.


Voir l'image PIA03838: Candor Chasma sur le site de la NASA.
| | PIA03838: Candor Chasma PIA02154.jpg =

PIA02154: Collapse Tubes


Context image for PIA02154
Collapse Tubes

The discontinuous channels in this image are collapsed lava tubes.

Image information: VIS instrument. Latitude -19.7N, Longitude 317.5E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA02154: Collapse Tubes sur le site de la NASA.
| | PIA02154: Collapse Tubes PIA02185.jpg =

PIA02185: A Dust Devil Playground


Context image for PIA02185
A Dust Devil Playground

Dust Devil activity in this region between Brashear and Ross Craters is very common. Large regions of dust devil tracks surround the south polar region of Mars.

Image information: VIS instrument. Latitude -55.2N, Longitude 244.2E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA02185: A Dust Devil Playground sur le site de la NASA.
| | PIA02185: A Dust Devil Playground PIA03768.jpg =

PIA03768: The So-Called "Face on Mars"


(Released 13 April 2002)
The Science

The so called "Face on Mars" can be seen slightly above center and to the right in this THEMIS visible image. This 3-km long knob, located near 10° N, 40° W (320° E), was first imaged by the Viking spacecraft in the 1970's and was seen by some to resemble a face carved into the rocks of Mars. Since that time the Mars Orbiter Camera on the Mars Global Surveyor spacecraft has provided detailed views of this hill that clearly show that it is a normal geologic feature with slopes and ridges carved by eons of wind and downslope motion due to gravity. A similar-size hill in Phoenix, Arizona resembles a camel lying on the ground, and Phoenicians whimsically refer to it as Camelback Mountain. Like the hills and knobs of Mars, however, Camelback Mountain was carved into its unusual shape by thousands of years of erosion. The THEMIS image provides a broad perspective of the landscape in this region, showing numerous knobs and hills that have been eroded into a remarkable array of different shapes. Many of these knobs, including the "Face," have several flat ledges partway up the hill slopes. These ledges are made of more resistant layers of rock and are the last remnants of layers that once were continuous across this entire region. Erosion has completely removed these layers in most places, leaving behind only the small isolated hills and knobs seen today.

Many of the hills and ridges in this area also show unusual deposits of material that occur preferentially on the cold, north-facing slopes. It has been suggested that these deposits were "pasted" on the slopes, with the distinct, rounded boundary on their upslope edges being the highest remaining point of this pasted-on layer. In several locations, such as in the large knob directly south of the "Face," these deposits occur at several different heights on the hill. This observation suggests the layer once draped the entire knob and has since been removed from all but the north-facing slopes. The presence of water ice in these layers is a likely possibility to account for their preservation only on the colder surfaces. Alternatively, these unique features could be the result of the slow downslope motion of the surface layer, possibly enhanced by the presence of ground ice. One argument against downslope motion is the observation that the uppermost rounded boundary of these layers typically occurs at approximately the same distance below the ridge crest. This would suggest the (seemingly) unlikely possibility that all of these layers had moved downslope the same amount regardless of where they are located. In either case, ground ice likely plays an important role in the formation and preservation of these deposits because they only occur on the cold slopes facing away from the Sun where ground ice is more stable and may still be present today.

The Story
Nature is an imaginative artist, creating all kinds of wonderful landforms, cloud shapes, and other patterned features that remind people of familiar things in our lives. We see a "man in the moon" when it is full in the night sky, and dream of a dromedary-dotted desert when coming upon Arizona's Camelback Mountain or Colorado's "Kissing Camels" in the "Garden of the Gods." Near Ludlow, California, a lonely prospector once noticed that the appealing outline of the mountains resembled a reclining woman, and named the place Sleeping Beauty. And this naming delight isn't limited to Earth. The Mars Pathfinder mission team couldn't help but name the rocks at the landing site, including a bear-headed-looking one named Yogi.

Part of the fun of exploration is not just visiting a strange world, but relating to it in human terms. On Mars, we've already seen a valentine heart-shaped crater, a happy-faced crater, and even a murky and mysterious "face" on Mars. This face (seen here about halfway down the image and to the right) is really just a hill with slopes and ridges that are shadowed in a way that can sometimes resemble a face from far away. The first picture of this area was taken by the Viking spacecraft in the 1970s, and people have been intrigued ever since. However, orbiter camera technologies have actually become so good in providing a clear view of the hill that it's almost a disappointment to see how normal an eroded hill this well-liked feature is. Well, disappointing unless you're a geologist, that is!

This whole area is, in fact, a geologist's dream. Erosion has been Nature's sculptor throughout the area, and all kinds of remarkably shaped knobs and hills speckle the region. While their shapes are fun to contemplate, it's no mystery to geologists how they formed. Several flat ledges part way up the slopes of these hills are made of layers of rock that stand strong against erosion's relentless carving. Less resistant layers in the region have eroded away completely in most places, leaving behind only the small, isolated hills and knobs we see today. Don?t think everything in this scene is easily understandable, however. What captures the attention of scientists is a bunch of unusual deposits of material on the cold, north-facing slopes of the hills. Did Nature mix some Martian dirt and ice from the planet's "pallet," and then "paste" on a slightly cemented deposit over the northern slopes? Or did an upper layer of material slowly creep downslope over time, carried by the movement of ice? Ground ice, in this case, has probably been more of a preserver than an eroder, keeping a record of the formation and existence of these deposits over time. Geologists are grateful for that peek into the Martian past and the chance to study it in-depth.

Voir l'image PIA03768: The So-Called "Face on Mars" sur le site de la NASA.

| | PIA03768: The So-Called "Face on Mars" PIA03280.jpg =

PIA03280: Shalbatana Vallis


Context image for PIA03280
Shalbatana Vallis

This image shows part of Shalbatana Vallis, with steep cliffsides and large pit in the channel floor. Many small channels appear to end at the pit, or pass to its north.

Image information: VIS instrument. Latitude 1.6N, Longitude 316.1E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03280: Shalbatana Vallis sur le site de la NASA.
| | PIA03280: Shalbatana Vallis PIA03287.jpg =

PIA03287: Windstreak


Context image for PIA03287
Windstreak

This beautiful windstreak is located on the lava flows from Arsia Mons.

Image information: VIS instrument. Latitude -17.0N, Longitude 229.2E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03287: Windstreak sur le site de la NASA.
| | PIA03287: Windstreak PIA03190.jpg =

PIA03190: Lyell Gullies


Context image for PIA03190
Lyell Gullies

These gullies are located on a cliff-face within Lyell Crater.

Image information: VIS instrument. Latitude 69.6S, Longitude 346.3E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03190: Lyell Gullies sur le site de la NASA.
| | PIA03190: Lyell Gullies PIA03637.jpg =

PIA03637: Galle Cr. Dunes


Context image for PIA03637
Galle Cr. Dunes

These dunes are located on the floor of Galle Crater.

Image information: VIS instrument. Latitude 51.5S, Longitude 329.0E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03637: Galle Cr. Dunes sur le site de la NASA.
| | PIA03637: Galle Cr. Dunes PIA02153.jpg =

PIA02153: Polar Layers


Context image for PIA02153
Polar Layers

This image of the south polar region shows layered material. It is not known if the layers are formed yearly or if they form over the period of 10s to 100s of years or more.

Image information: VIS instrument. Latitude -80.3N, Longitude 296.2E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA02153: Polar Layers sur le site de la NASA.
| | PIA02153: Polar Layers PIA02182.jpg =

PIA02182: Where's the Surface?


Context image for PIA02182
Where's the Surface?

In this image the martian surface is completely hidden from view by thick clouds. The thickness of the clouds indicates the dust is a major component of the clouds. Images like this one can provide vital information about the atmosphere and climate of Mars today. This image was collected during late summer near the south pole.

Image information: VIS instrument. Latitude -69.9N, Longitude 235.3E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA02182: Where's the Surface? sur le site de la NASA.
| | PIA02182: Where's the Surface? PIA03761.jpg =

PIA03761: Isidis Rim


(Released 03 April 2002)
This lunar-like scene occurs along the southeastern rim of the Isidis Planitia basin. The Isidis basin is an ancient impact crater some 1200 km across that is found along the boundary separating the heavily-cratered southern highland terrain of Mars from the northern lowlands. Elements of both terrains are evident in this image as an island of rugged highland terrain surrounded by smoother lowland terrain. The resurfacing of the Isidis basin produced a system of wrinkle ridges, some of which are seen on the lowland terrain in the image. Wrinkle ridges are a common feature on the surface of the moon and add to the lunar-like quality of this image. Layers are visible in the large island, the most resistant of which likely are from lava flows that created the highland terrain. The process by which the global-scale highland/lowland dichotomy was created remains a mystery.

Voir l'image PIA03761: Isidis Rim sur le site de la NASA.
| | PIA03761: Isidis Rim PIA03289.jpg =

PIA03289: Moving Downhill


Context image for PIA03289
Moving Downhill

This narrow canyon is part of Coprates Chasma. On the east side of the canyon a landslide is visible. The southern wall of the canyon is marked by bright and dark streaks where dust has slid down the cliff face.

Image information: VIS instrument. Latitude -10.5N, Longitude 264.8E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03289: Moving Downhill sur le site de la NASA.
| | PIA03289: Moving Downhill PIA03694.jpg =

PIA03694: Holden Crater Delta


Context image for PIA03694
Holden Crater Delta

This fan-shaped delta deposit is located in Holden Crater.

Image information: VIS instrument. Latitude -27.3N, Longitude 324.5E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03694: Holden Crater Delta sur le site de la NASA.
| | PIA03694: Holden Crater Delta PIA03645.jpg =

PIA03645: Brashear Cr. Dunes


Context image for PIA03645
Brashear Cr. Dunes

This field of dunes is located on the floor of Brashear Crater.

Image information: VIS instrument. Latitude 53.9S, Longitude 240.6E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03645: Brashear Cr. Dunes sur le site de la NASA.
| | PIA03645: Brashear Cr. Dunes PIA03583.jpg =

PIA03583: Southern Crater


Context image for PIA03583
Southern Crater

This crater is located south of Agassiz Crater. It is likely that the polar freeze/thaw/frost cycle is responsible for unusual appearance of the ejecta region around the crater.

Image information: VIS instrument. Latitude 76.2S, Longitude 247.8E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03583: Southern Crater sur le site de la NASA.
| | PIA03583: Southern Crater PIA01358.jpg =

PIA01358: Flow and Fracture


Context image for PIA01358
Flow and Fracture

In this part of the Tharsis region, old lava flows have been fractured. Younger lava flows are unfractured (flow at bottom).

Image information: VIS instrument. Latitude 9.3N, Longitude 282.2E. 18 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA01358: Flow and Fracture sur le site de la NASA.
| | PIA01358: Flow and Fracture PIA03693.jpg =

PIA03693: Channel


Context image for PIA03693
Channel

This channel is located south of Iani Chaos.

Image information: VIS instrument. Latitude -10.9N, Longitude 345.5E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03693: Channel sur le site de la NASA.
| | PIA03693: Channel PIA03766.jpg =

PIA03766: Medusae Fossae Formation


(Released 10 April 2002)
The Science

This THEMIS visible image was acquired near 7° S, 172° W (188° E) and shows a remarkable martian geologic deposit known as the Medusae Fossae Formation. This Formation, seen here as the raised plateau in the upper two-thirds of the image, is a soft, easily eroded deposit that extends for nearly 1,000 km along the equator of Mars. In this region the deposit has been heavily eroded by the wind to produce a series of linear ridges called yardangs. These parallel ridges point in direction of the prevailing winds that carved them, and demonstrate the power of martian winds to sculpt the dry landscape of Mars. The Medusae Fossae Formation has been completely stripped from the surface in the lower third of the image, revealing a harder layer below that is more resistant to wind erosion. The easily eroded nature of the Medusae Fossae Formation suggests that it is composed of weakly cemented particles, and was most likely formed by the deposition of wind-blown dust or volcanic ash. Several ancient craters that were once completely buried by this deposit are being exposed, or exhumed, as the overlying Medusae Formation is removed. Very few impact craters are visible on this Formation, indicating that the surface seen today is relatively young, and that the processes of erosion are likely to be actively occurring.

The Story
Medusa of Greek mythology fame, the name-giver to this region, had snaky locks of hair that could turn a person to stone. Wild and unruly, this monster of the underworld could certainly wreak havoc on the world of the human imagination. As scary as she was, Medusa would have no advantage over the fierce, masterful winds blowing across Mars, which once carved the streaky, terrain at the top of this image. Wild and whipping, these winds have slowly eroded away the "topsoil," revealing ancient craters and other surface features they once covered. The loosely cemented particles of this "topsoil" are likely made up of dust or volcanic ash, and are thus more susceptible to windblown erosion. The Martian winds have actually been strong and relentless enough over time to strip the land in the bottom of this image of the material that once covered it, leaving it hard and bare to the eye.

Voir l'image PIA03766: Medusae Fossae Formation sur le site de la NASA.
| | PIA03766: Medusae Fossae Formation PIA03199.jpg =

PIA03199: Polar Gullies


Context image for PIA03199
Polar Gullies

This 34m resolution image of the South Polar Cap contains gullies that have developed, or been uncovered, by the warmth of summer.

Image information: VIS instrument. Latitude 73.8S, Longitude 146.4E. 34 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03199: Polar Gullies sur le site de la NASA.
| | PIA03199: Polar Gullies PIA03902.jpg =

PIA03902: 1st Manned Lunar Landing and 1st Robotic Mars Landing Commemorative Release: Viking 1 Landing Site in Chryse Planitia - Visible Image


(Released 20 July 2002)
The date July 20 marks two major milestones in humanity's grand push to explore the frontier of space. On this date, in 1969, the Apollo 11 lunar module Eagle landed the first men (Neil Armstrong and Edwin "Buzz" Aldrin) on another celestial body, the Moon . In 1976, seven years to the day, the robotic Viking 1 Lander made the first successful landing on the ruddy rock strewn surface of Mars . To commemorate these milestones the THEMIS Team is releasing both an IR (Infra-Red) and Visible image of the Viking 1 landing site. THEMIS is currently imaging landing sites for future robotic missions including the twin Mars Exploration Rovers set to touchdown in January 2004. All of these missions anticipate the day when, hopefully in the not too distant future, astronauts will land on the red planet. So as we reflect on our rich tradition of space exploration let us also dream and plan on a wondrous future exploring the mysterious red planet.

Viking 1 landed on a relatively smooth plain in Chryse Planitia (Plains of Gold), which is a low region of the northern hemisphere of Mars. The reported landing site is 22.48° N, 49.97° W. The landing site is marked with an X in the images. This region of Mars is dominated by plains, wrinkle ridges, and impact craters.

This 4 framelet image is part of a 5 band image sequence. This image primarily contains plains, wrinkle ridges and craters. Some craters have ripples on their floors, which are probably dunes while other craters have some type of deposit on their floors. These deposits are most likely aeolian in nature. In places the wrinkle ridges appear to be buried or mantled with material that may be either volcanic and or fluvial in origin. The lander's view of the surface shows an undulating rocky surface with some finer grained materials present, and distant crater rims and wrinkle ridges.


Voir l'image PIA03902: 1st Manned Lunar Landing and 1st Robotic Mars Landing Commemorative Release: Viking 1 Landing Site in Chryse Planitia - Visible Image sur le site de la NASA.
| | PIA03902: 1st Manned Lunar Landing and 1st Robotic Mars Landing Commemorative Release: Viking 1 Landing Site in Chryse Planitia - Visible Image PIA03667.jpg =

PIA03667: Linear Clouds


Context image for PIA03667
Linear Clouds

These clouds are located near the edge of the south polar region. The cloud tops are the puffy white features in the bottom half of the image.

Image information: VIS instrument. Latitude -80.1N, Longitude 52.1E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03667: Linear Clouds sur le site de la NASA.
| | PIA03667: Linear Clouds PIA03485.jpg =

PIA03485: Hydaspis Chaos in Nighttime Infrared

This nighttime infrared image, taken by the thermal emission imaging system, captures a massively disrupted region on Mars called Hydaspis Chaos, which is located near the equator at two degrees north, 29 degrees west. The total vertical difference from the lowest to highest points in this region is about five kilometers (three miles.)

The steep slopes leading down into the canyon of Hydaspsis Chaos are strewn with rocks, while the plateaus and mesas above are covered in dust. This pattern indicates that processes are at work to prevent the dust from completely covering the surface of these slopes, even over the very long period since these canyons were formed.

The slopes and floor of these canyons show remarkable variability in the distribution of rocks and fine-grained material. Chaotic terrain may have been formed when subsurface ground water or ice was removed, and the overlying ground collapsed. The release of this water or ice (or both) formed the outflow channel Tiu Valles, which flowed across the Mars Pathfinder landing site.

This image captures a region of chaotic terrain about 106 kilometers (65 miles) long and 32 kilometers (20 miles) wide. The channel that feeds into the chaos at the bottom of the image is about 7 kilometers (4.3 miles)wide and 280 meters (930 feet) deep. The image was acquired on February 19, 2002. North is to the right of the image.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The thermal emission imaging system was provided by Arizona State University, Tempe. Lockheed Martin Astronautics, Denver, is the prime contractor for the project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

Voir l'image PIA03485: Hydaspis Chaos in Nighttime Infrared sur le site de la NASA.

| | PIA03485: Hydaspis Chaos in Nighttime Infrared PIA03792.jpg =

PIA03792: Kasei Valles


(Released 9 May 2002)
Kasei Valles (Kasei is the Japanese word for Mars) is one of the largest outflow channels on Mars. Kasei Valles stretches some 2,000 km across the face of Mars and empties into the Chryse basin. This THEMIS image is of the northern branch of Kasei Valles and shows the channel floor and northern channel wall. The plateau surface located at the top of this image is more heavily cratered than the channel floor which indicates that the plateau is older than the channel floor. The wall of the plateau has spur and gully topography present. The floor of the channel has evidence of fluvial scour including a smaller inner channel. These features were probably carved out during waning stage flow. The probable causes of Martian floods are massive releases of subsurface water/ice due to possible subsurface volcanic activity. Martian outflow channels begin at point sources (chaotic terrain and box canyons) and then flow unconfined into a basin region.

Voir l'image PIA03792: Kasei Valles sur le site de la NASA.
| | PIA03792: Kasei Valles PIA03826.jpg =

PIA03826: Gullies of Gorgonus Chaos


(Released 11 June 2002)

The Science
This fractured surface belongs to a portion of a region called Gorgonum Chaos located in the southern hemisphere of Mars. Gorgonum Chaos is named after the Gorgons in ancient Greek mythology. The Gorgons were monstrous sisters with snakes for hair, tusks like boars and lolling tongues who lived in caves. As it turns out this is indeed a fitting name for this region of Mars because it contains a high density of gullies that "snake" their way down the walls of the troughs located in this region of chaos. Upon closer examination one finds that these gullies and alluvial deposits, initially discovered by Mars Global Surveyor, are visible on the trough walls (best seen near the bottom of the image). These gullies appear to emanate from a specific layer in the walls. The gullies have been proposed to have formed by the subsurface release of water.


The Story

This fractured, almost spooky-looking surface belongs to a region called Gorgonum Chaos in the southern hemisphere of Mars. Chaos is a term used for regions of Mars with distinctive areas of broken terrain like the one seen above. This area of Martian chaos is named after the Gorgons in ancient Greek mythology. The Gorgons were monstrous sisters with snakes for hair, tusks like boars, and lolling tongues, who lived in caves. The Gorgons, including famous sister Medusa, could turn a person to stone, and their writhing, snakelike locks cause revulsion to this day. Given the afflicted nature of this contorted terrain, with all of its twisted, branching channels and hard, stony-looking hills in the top half of the image, this is indeed a fitting name for this region of Mars.

The name also has great appeal, because the area contains a high density of gullies that "snake" their way down the walls of the troughs located in this region of Martian chaos. Gullies are trenches cut into the land as accelerated streams of water (or another liquid) erode the surface. To see these, click on the above image to get a high-resolution view, and then focus on the trenches at the bottom. Running down the walls of the trough are the thin, dark lines of the gullies. Beneath the grooved, gully channels are faint, softer-looking fans of material. These are called alluvial deposits. Alluvial simply means all of the sand, gravel, and dirt that is carried and deposited by a liquid. On Earth, that liquid is typically water. As the liquid carves the gully, the eroded material from the channels get carried along and deposited below in fan-like shapes.

These gully features were initially discovered by Odyssey's sister orbiter, Mars Global Surveyor, and caused quite a bit of emotional chaos in the scientific community when they were announced. Why? If you look closely, you can see that the gullies seem to form from a specific layer in the wall. That is, they all seem to begin at roughly the same point on the wall. That suggests that maybe, just maybe, there's a subsurface source of water at that layer that sometimes leaks out and runs down the walls to form both the gullies and the skirt-like fans of deposits beneath them. Other scientists, however, loudly assert that another liquid besides water could have carved the gullies.

The debate sometimes gets so intense, you'd think that the opposing sides would want to turn each other's ideas to stone! But not for long. While the debate rages on, the neat thing is that everyone's really united. The goal is to find out, and the way to find out is to keep proposing different hypotheses and testing them out. That's the excitement of science, where everyone's solid research counts, and divergent views are appreciated for keeping science sound.

Voir l'image PIA03826: Gullies of Gorgonus Chaos sur le site de la NASA.
| | PIA03826: Gullies of Gorgonus Chaos PIA03482.jpg =

PIA03482: Channel at Night in Thermal Infrared

This nighttime thermal infrared image, taken by the thermal emission imaging system on NASA's 2001 Mars Odyssey spacecraft, shows differences in temperature that are due to differences in the abundance of rocks, sand and dust on the surface. Rocks remain warm at night, as seen in the warm (bright) rim of the five kilometer (three mile) diameter crater located on the right of this image.

The sinuous channel floor is cold, suggesting that it is covered by material that is more finely grained than the surrounding plains. The interior of the crater shows a great deal of thermal structure, indicating that the distribution of rocks, sand and dust varies across the floor.

The presence of rocks on the rim and inner wall indicates that this crater maintains some of its original character, despite erosion and deposition by Martian winds. Nighttime infrared images such as this one will greatly aid in mapping the physical properties of Mars' surface.

This image is centered at 2 degrees north, 0.4 degrees west, and was acquired at about 3:15 a.m. local Martian time. North is to the right of the image.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The thermal emission imaging system was provided by Arizona State University, Tempe. Lockheed Martin Astronautics, Denver, is the prime contractor for the project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

Voir l'image PIA03482: Channel at Night in Thermal Infrared sur le site de la NASA.

| | PIA03482: Channel at Night in Thermal Infrared PIA03795.jpg =

PIA03795: Water Ice Clouds over the Northern Plains


(Released 14 May 2002)
The Science
This image, centered near 48.5 N and 240.5 W, displays splotchy water ice clouds that obscure the northern lowland plains in the region where the Viking 2 spacecraft landed. This image is far enough north to catch the edge of the north polar hood that develops during the northern winter. This is a cap of water and carbon dioxide ice clouds that form over the Martian north pole. As Mars progresses into northern spring, the persistent north polar hood ice clouds will dissipate and the surface viewing conditions will improve greatly. As the season develops, an equatorial belt of water ice clouds will form. This belt of water ice clouds is as characteristic of the Martian climate as the southern hemisphere summer dust storm season. Seasons on Mars have a dramatic effect on the state of the dynamic Martian atmosphere.

The Story
Muted in an almost air-brushed manner, this image doesn't have the crispness that most THEMIS images have. That's because clouds were rising over the surface of the red planet on the day this picture was taken. Finding clouds on Mars might remind us of conditions here on Earth, but these Martian clouds are made of frozen water and frozen carbon dioxide -- in other words, clouds of ice and "dry ice."

Strange as that may sound, the clouds seen here form on a pretty regular basis at the north Martian pole during its winter season. As springtime comes to the northern hemisphere of Mars (and fall comes to the southern), these clouds will slowly disappear, and a nice belt of water ice clouds will form around the equator. So, if you were a THEMIS camera aimer, that might tell you when your best viewing conditions for different areas on Mars would be.

As interesting as clear pictures of Martian landforms are, however, you wouldn't want to bypass the weather altogether. Pictures showing seasonal shifts are great for scientists to study, because they reveal a lot about the patterns of the Martian climate and the circulation of the atmosphere. There are a lot of interesting global climate relationships to study. For example, when it's winter in the north of Mars and clouds like the ones in this image form, dust storms rage in the south of Mars, where it's summer.

So why does Mars have these wild seasons? Like the Earth, Mars is tilted on its axis. As it travels in its orbit around the sun, the angle between the Earth's axis and the Earth-Sun line changes. That's true for Mars as well. As each point on Mars spins on the rotating red planet each day, the part of the cycle spent in sunlight (day) and shadow (night) just aren't equal because of these angles. When day is longer than night (summer) in the north, night is longer than day (winter) in the south. Half a year later, when Mars has traveled in its orbit to the other side of the sun, the situation is exactly reversed.

All this sounds familiar to Earthlings, but there's yet one more difference. Mars is farther away from the sun than the Earth. That means it takes longer for Mars to make a trip around the sun in its orbit than the Earth does -- about twice as long, in fact. That means that the seasons on Mars also last twice as long!

Voir l'image PIA03795: Water Ice Clouds over the Northern Plains sur le site de la NASA.
| | PIA03795: Water Ice Clouds over the Northern Plains PIA03821.jpg =

PIA03821: Southeastern Scarp of Olympus Mons


(Released 4 June 2002)

The Science
The movement pathways of molten rock, or lava, is demonstrated in this image of a portion of Olympus Mons, the largest volcano in our solar system. These now-solid lava flows all show nearly the same orientation, having flowed from northeast to southwest, down the slope of the volcano's southeastern flank. Throughout the image, narrow pairs of lineaments can be observed ? these are called levees, and are essentially channel walls formed by the solidification and buildup of the edges of the lava flows. We can determine that the high-standing mountains must be older than the flows because they blocked their passage, causing the flows to change direction and go around the taller mountains. As in other THEMIS images, the lack of bright-dark contrast in this image indicates that a layer of dust covers these surfaces. The surfaces of the lava flows are virtually uncratered, attesting to the relatively recent formation of the flows, where ?recent? is within the last 500 million years or so. Several meteorites found on Earth appear to have come from volcanic regions on Mars ? their ages are as young as 180 million years, leading many scientists to suggest that volcanoes of the Tharsis region, including Olympus Mons, may be the source regions of these meteorites. A prominent pear-shaped bowl is apparent on a hill in the lower right third of the image ? the collapse and mass movement of material down slope, which also formed a debris pile below and southeast of the bowl, likely formed this feature.


The Story

Millions and millions of years ago, a huge impact blasted a crater into the surface of Mars, sending particles of the Martian surface scattering into space at great speeds, where they spent millions and millions of years calmly in space before encountering a nearby orbiting planet: our own planet Earth. Hurtling down through Earth's atmosphere, these pieces of Mars landed in various regions of our world and were discovered by modern-day meteorite hunters. When scientists analyzed the ages and chemical composition of several meteorites, they were able to determine that these ancient space rocks came from Mars, were volcanic in origin, and were around 180 million years old.

So, where on Mars did they come from? Geologists had to turn the Martian globe, looking for volcanic areas that were relatively recent in their formation. Believe it or not, "recent" in geological terms can actually mean "180 million years young." So, where did their fingers point? To the Tharsis region, home to Olympus Mons, the largest volcano in our solar system.

The above THEMIS image hints at the young age of the lava flows around Olympus Mons. Since the surfaces of the lava flows are virtually uncratered, that means these lava flows were "relatively recent," forming within the last 500 million years or so. While no one knows for sure if the Mars meteorites came from this area, this lava-rich region seems likely as a possibility.

Always in search of relative ages of geological happenings on the red planet, geologists can also tell that the high-standing mountains in the area are older than the lava flows. You can follow the evidence too. Take a look at the mountains and the lava flows near them. The narrow, flowing lava lines throughout the image are called levees, and outline the supple contours of the channel walls that formed as the lava flows became solid and built up at the edges. Now solid, cool, and still, these lava flows once moved dramatically down the slope of the volcano's southeastern flank. It couldn't have been an entirely free flow: the mountains must have stood in their way, because it's clear that the layered flows of molten rock had to change direction and move around them.

That's not the only dramatic movement that took place here. Look also for the pear-shaped bowl on a hill in the lower right third of the image. It was formed when a huge mass of material collapsed and moved downslope, forming a debris pile below and southeast of the bowl.

Not everything that's happened in this region is ferocious, however. Because this image does not have severe black-and-white contrasts of landforms on the Martian surface, it's likely that a layer of dust has blanketed the region over time, giving it a calm uniform look that belies its angrier past.

Voir l'image PIA03821: Southeastern Scarp of Olympus Mons sur le site de la NASA.
| | PIA03821: Southeastern Scarp of Olympus Mons PIA03577.jpg =

PIA03577: Polar Terrains


Context image for PIA03577
Polar Terrains

The region surrounding the South Polar Cap contains many different terrain types. This image shows both etched terrain and a region of "mounds."

Image information: VIS instrument. Latitude 75S, Longitude 286.5E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

Voir l'image PIA03577: Polar Terrains sur le site de la NASA.

| | PIA03577: Polar Terrains PIA03905.jpg =

PIA03905: The So-Called "Face on Mars" in Infrared


(Released 24 July 2002)
This set of THEMIS infrared images shows the so-called "face on Mars" landform located in the northern plains of Mars near 40° N, 10° W (350 ° E). The "face" is located near the center of the image approximately 1/6 of the way down from the top, and is one of a large number of knobs, mesas, hills, and buttes that are visible in this THEMIS image. The THEMIS infrared camera has ten different filters between 6.2 and 15 micrometers - nine view the surface and one views the CO2 atmosphere. The calibrated and geometrically projected data from all of the nine surface-viewing filters are shown in this figure. The major differences seen in this region are due to temperature effects -- sunlit slopes are warm (bright), whereas those in shadow are cold (dark), The temperature in this scene ranges from ~50 °C (darkest) to ~15 °C (brightest). The major differences between the different filters are due to the expected variation in the amount of energy emitted from the surface at different wavelengths. Minor spectral differences (infrared "color") also exist between the different filters, but these differences are small in this region due to the uniform composition of the rocks and soils exposed at the surface.

The THEMIS infrared camera provides an excellent regional view of Mars - this image covers an area 32 kilometers (~20 miles) by approximately 200 kilometers (~125 miles) at a resolution of 100 meters per picture element ('pixel'). This image provides a broad perspective of the landscape and geology of the Cydonia region, showing numerous knobs and hills that have been eroded into a remarkable array of different shapes. In this "big picture" view the Cydonia region is seen to be covered with dozens of interesting knobs and mesas that are similar in many ways to the knob named the "face" - so many in fact that it requires care to discover the "face" among this jumble of knobs and hills. The 3-km long "face" knob was first imaged by the Viking spacecraft in the 1970's and was seen by some to resemble a face carved into the rocks of Mars. Since that time the Mars Orbiter Camera on the Mars Global Surveyor spacecraft has provided detailed views of this hill that clearly show that it is a normal geologic feature with slopes and ridges carved by eons of wind and downslope motion due to gravity. Many of the knobs in Cydonia, including the "face," have several flat ledges partway up the hill slopes. These ledges are made of more resistant layers of rock and are the last remnants of layers that once were continuous across this entire region. Erosion has completely removed these layers in most places, leaving behind only the small isolated hills and knobs seen today.

Voir l'image PIA03905: The So-Called "Face on Mars" in Infrared sur le site de la NASA.

| | PIA03905: The So-Called "Face on Mars" in Infrared PIA03738.jpg =

PIA03738: Candor Chasma on Mars, in Color

This image from the camera system on NASA.s Mars Odyssey was acquired of Candor Chasma within Valles Marineris, centered near 5 degrees south latitude, 283 degrees west longitude. This visible color image shows the effects of erosion on a sequence of dramatically layered rocks. These layers were initially deposited within Candor Chasma and have subsequently been eroded by a variety of processes, including wind and down-slope motion due to gravity. Relatively dark materials appear to mantle some areas of the layered deposits; these dark materials are likely sand. Few impact craters of any size can be seen in this image, indicating that the erosion and transport of material is occurring at a relatively rapid rate, so that any craters that form are rapidly buried or eroded. This image was acquired using the thermal infrared imaging system.s visible bands 1 (centered at 420nanometers), 2 (centered at 550 nanometers), and 3 (centered at 650nanometers), and covers an area approximately 19 kilometers (12 miles) in width by 50 kilometers (50 miles) in length.

The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the 2001 Mars Odyssey mission for NASA's Office of Space Science in Washington, D.C. Investigators at Arizona State University in Tempe, the University of Arizona in Tucson and NASA's Johnson Space Center, Houston, operate the science instruments. Additional science partners are located at the Russian Aviation and Space Agency and at Los Alamos National Laboratories, New Mexico. Lockheed Martin Astronautics, Denver, is the prime contractor for the project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL.

Voir l'image PIA03738: Candor Chasma on Mars, in Color sur le site de la NASA.

| | PIA03738: Candor Chasma on Mars, in Color PIA02890.jpg =

PIA02890: Blowouts


Context image for PIA02890
Blowouts

The semi-circular depressions in this image are called blowouts and are formed by wind action. These blowouts are part of the Medusae Fossae Formation.

Image information: VIS instrument. Latitude 0.1N, Longitude 65.0E. 18 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA02890: Blowouts sur le site de la NASA.
| | PIA02890: Blowouts PIA01147.jpg =

PIA01147: Craters on Crater


Context image for PIA01147
Craters on Crater

Several craters were formed on the rim of this large crater. The movement of material downhill toward the floor of the large crater has formed interesting patterns on the floors of the smaller craters.

Image information: VIS instrument. Latitude -37.8N, Longitude 200.9E. 17 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA01147: Craters on Crater sur le site de la NASA.
| | PIA01147: Craters on Crater PIA03579.jpg =

PIA03579: Gigas Sulci Features


Context image for PIA03579
Gigas Sulci Features

Aside from a few highstanding ridges, the Gigas Sulci region is completely dust/sand covered. The wind has formed dunes across the region.

Image information: VIS instrument. Latitude 7.8N, Longitude 229.5E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03579: Gigas Sulci Features sur le site de la NASA.
| | PIA03579: Gigas Sulci Features PIA01870.jpg =

PIA01870: Bright and Dark


Context image for PIA01870
Bright and Dark

These bright and dark windstreaks are located in the plains surrounding the north polar cap.

Image information: VIS instrument. Latitude 72.1N, Longitude 35.2E. 20 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA01870: Bright and Dark sur le site de la NASA.
| | PIA01870: Bright and Dark PIA03040.jpg =

PIA03040: Pavonis Mons Flank


Context image for PIA03040
Pavonis Mons Flank

This image shows a portion of the flank of Pavonis Mons. The collapse features at the bottom of the image are related to subsurface tubes that once contained lava.

Image information: VIS instrument. Latitude 0.6S, Longitude 247.0E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03040: Pavonis Mons Flank sur le site de la NASA.
| | PIA03040: Pavonis Mons Flank PIA01877.jpg =

PIA01877: Cerulli Crater


Context image for PIA01877
Cerulli Crater

This image of the southern rim of Cerulli Crater shows numerous small channel dissecting the rim.

Image information: VIS instrument. Latitude 31.5N, Longitude 22.0E. 19 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA01877: Cerulli Crater sur le site de la NASA.
| | PIA01877: Cerulli Crater PIA02171.jpg =

PIA02171: Cloud Front


Context image for PIA02171
Cloud Front

These clouds formed in the south polar region. The faintness of the cloud system likely indicates that these are mainly ice clouds, with relatively little dust content.

Image information: VIS instrument. Latitude -86.7N, Longitude 212.3E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA02171: Cloud Front sur le site de la NASA.
| | PIA02171: Cloud Front PIA03047.jpg =

PIA03047: Dunes on Plains


Context image for PIA03047
Dunes on Plains

These dunes are located on the plains around Doanus Vallis.

Image information: VIS instrument. Latitude 62.3S, Longitude 335.3E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03047: Dunes on Plains sur le site de la NASA.
| | PIA03047: Dunes on Plains PIA03828.jpg =

PIA03828: Floor of Baldet Crater


(Released 13 June 2002)

The Science
This THEMIS visible image shows a remarkable array of dunes on the floor of a large impact crater named Baldet located near 22.8° N. Many of the dunes in this region are isolated features, with large, sand-free "interdune" surfaces between the individual dunes. These isolated dunes typically occur in regions where there is a limited supply of sand. Any sand that is present moves rapidly across the interdune surfaces, which in many cases are hardened surfaces over which the sand can easily bounce, or "saltate." When this loose sand lands on a dune it cannot travel as quickly and is trapped within the dune. In some areas within this sand mass the dunes have grown together to form crescent dunes and dune ridges. The dunes in this image are likely active today, slowly migrating across the crater floor. THEMIS will re-image this and other dunes throughout the Mars Odyssey mission to search for any evidence of dune motion over time. Based on the asymmetrical shape of the dunes, the wind direction over much of the dune field appears to be from the right (west) or upper right (northwest). However, the topography of the crater floor apparently produces complex wind patterns within the dune field, as can be seen by the different orientations of the dunes. For example the dunes in the lower portion of the image appear to be somewhat symmetrical and aligned east-west, suggesting that the wind in this region blows from both the north (top) and south (bottom).


The Story

A fuzzy "carpet" of sand dunes covers the floor of a large impact crater, which you can see almost in full in the context image to the right. While the dunes give this area a plush, tufted look, there actually isn't a lot of sand in this area. How can you tell? Large, sand-free spaces exist in between the dunes, and those usually occur when sand particles are sparse. You can see these "interdune spaces" better if you click on the image for the more detailed view.

The sand that is present on the crater floor doesn't just drift, it hops or bounces across the hardened surface. Given the very thin Martian atmosphere, the wind doesn't have the strength to pick up grains of sand and transport them very far. So, the sand simply skips across the land until it is trapped within a dune like the ones in this image.

The wind doesn't always blow in the same direction, though, so the sand hops and skips in different directions too. Based on the shape of the dunes at the top of this image, the wind direction over much of the dune field appears to be from the west or northwest. However, the dunes in the lower portion of the image are clearly aligned in a different (east-west) direction, meaning the wind blows in a north-south direction there. Such differences in wind direction are probably due to the topography of the crater floor, which apparently produces complex wind patterns within the dune field. This difference gives the entire dune field a whirly feel.

In some areas within this sand mass the dunes have grown together to form curvy, crescent dunes and long, snaky dune ridges. While some sand dunes on Mars have solidified into stationary landforms, the dunes in this image are probably active today, slowly migrating across the crater floor in tiny leaps and bounds. Keep following THEMIS images to witness this migration over time, because the camera will re-image these and other dunes throughout the Mars Odyssey mission.

Voir l'image PIA03828: Floor of Baldet Crater sur le site de la NASA.
| | PIA03828: Floor of Baldet Crater PIA03290.jpg =

PIA03290: Surface Dissection


Context image for PIA03290
Surface Dissection

At the southern end of Echus Cansma this dissected surface and mega-gullies occur.

Image information: VIS instrument. Latitude -1.1N, Longitude 278.8E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03290: Surface Dissection sur le site de la NASA.
| | PIA03290: Surface Dissection PIA02698.jpg =

PIA02698: Multi-layer Ejecta


Context image for PIA02698
Multi-layer Ejecta

This crater has a layered ejecta blanket.

Image information: VIS instrument. Latitude 17.9N, Longitude 272.3E. 18 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA02698: Multi-layer Ejecta sur le site de la NASA.
| | PIA02698: Multi-layer Ejecta PIA03814.jpg =

PIA03814: Becquerel Crater Deposit


(Released 28 May 2002)
The finely layered deposit in Becquerel crater, seen in the center of this THEMIS image, is slowly being eroded away by the action of windblown sand. Dark sand from a source north of the bright deposit is collecting along its northern edge, forming impressive barchan style dunes. These vaguely boomerang-shaped dunes form with their two points extending in the downwind direction, demonstrating that the winds capable of moving sand grains come from the north. Grains that leave the dunes climb the eroding stair-stepped layers, collecting along the cliff faces before reaching the crest of the deposit. Once there, the sand grains are unimpeded and continue down the south side of the deposit without any significant accumulation until they fall off the steep cliffs of the southern margin. The boat-hull shaped mounds and ridges of bright material called yardangs form in response to the scouring action of the migrating sand. To the west, the deposit has thinned enough that the barchan dunes extend well into the deeply eroded north-south trending canyons. Sand that reaches the south side collects and reforms barchan dunes with the same orientation as those on the north side of the deposit. Note the abrupt transition between the bright material and the dark crater floor on the southern margin. Steep cliffs are present with no indication of rubble from the obvious erosion that produced them. The lack of debris at the base of the cliffs is evidence that the bright material is readily broken up into particles that can be transported away by the wind. The geological processes that are destroying the Becquerel crater deposit appear active today. But it is also possible that they are dormant, awaiting a particular set of climatic conditions that produces the right winds and perhaps even temperatures to allow the erosion to continue.

Voir l'image PIA03814: Becquerel Crater Deposit sur le site de la NASA.
| | PIA03814: Becquerel Crater Deposit PIA03771.jpg =

PIA03771: Holden Crater/Uzboi Valles


(Released 17 April 2002)
The Science
This image, located near 27.0S and 35.5W (324.5E), displays the intersection of Holden Crater with Uzboi Valles. This region of Mars contains a number of features that could be related to liquid water on the surface in the Martian past. Holden Crater contains finely layered sedimentary units that have been subsequently dissected. The hummucky terrain in the bottom half of the image is the remnants of this terrain, though the fine layers are not visible in this image at this resolution. The sedimentary units could have formed through deposition of material in a lacustrine type environment. Alternately, these layers could also be volcanic ash deposits. Uzboi Valles, which enters the crater from the southwest, is a catastrophic outflow channel that formed in the Martian past. The streamlined nature of the topographic features at the intersection of the crater with Uzboi Valles record the erosional pattern of flowing liquid water on the surface of Mars during the episodic outflow event.

The Story
Mars doesn't have a shortage of rugged terrain, and this area is no exception. While things look pretty quiet now, this cratered region was once the scene of some tremendous action. Long ago in Martian history, an incoming meteoroid probably smashed into the planet and produced a giant impact crater named Holden Crater, which stretches 88 miles across the Martian surface. The history of the area around Holden Crater doesn?t stop there. At some point, a catastrophic flood burst forth on the surface, forming an impressive outflow channel called Uzboi Valles. No one knows exactly how that happened, or whether the water might even have rushed into Holden Crater at some point, forming a long-ago lake. What we do know is that there is a lot of sedimentary material that could have formed in two hypothesized ways: in an ancient lake environment or as volcanic-ash deposits.

Scientists are searching for the answers by studying the region where Uzboi Valles meets the crater. You can see the rough edge of Holden Crater running diagonally down in a sharply edged swath (from the top left-hand corner of this image to the center right-hand side). Just below it, running almost smoothly down the right-hand side of the image is an intriguing channel where water may once have flowed. Much of the terrain in the bottom half of the image, in fact, seems to be cut into a swish-swash of dissected sedimentary terrain. Sliced through in such a way, the terrain ends up carrying bunches of small, rounded hills called "hummocks." Earth can boast of its own rolling, hummocky terrain too, such as that found in the ravine-cut Missouri Hills and High Plains areas of South Dakota.

Voir l'image PIA03771: Holden Crater/Uzboi Valles sur le site de la NASA.
| | PIA03771: Holden Crater/Uzboi Valles PIA03813.jpg =

PIA03813: Noctis Labyrinthus/Valles Marineris transition


(Released 27 May 2002)
The Science
The transition zone between maze-like troughs of Noctis Labyrinthus and the main Valles Marineris canyon system are shown in this THEMIS visible camera image. This huge system of troughs near the equator of Mars was most likely created by tectonic forces which pulled apart the crust. In the top third of the image, on the western side of the northernmost trough, a buildup of relatively bright material on the plateau has led to an overflow into the trough. Most of the bottom of this trough is covered by sediment deposited from the plateau above. On the right-hand side of this same trough, on the southern wall, there is a thin streak of darker material that also seems to originate from the plateau above. This is most likely a gully formation. This feature could also be a dust avalanche, but because no other similar features are seen, this is unlikely. Other dark material deposited by some unknown process can also be seen all around the easternmost ridge in the trough. Near the bottom of the canyon, layers from the center ridges and the canyon wall can be matched, indicating that the ridges are made of the same material as the wall.

Near the bottom of the image, there is yet another depression. This trough is filled with sediment deposited from erosion of the trough wall and possibly from the plateau above. All around the walls of this trough a layer of rocky material can be also be seen. It appears that the areas directly below the rocky ledges are "shielded" from landslide material from above. Finally, in the northwestern wall of this trough, there is an irregular pattern of very bright material not seen anywhere else in the image. Identifying similar formations in other THEMIS visible camera images could provide some context for its occurrence and help us understand how it was formed.


The Story
Tectonic forces wrenched apart the crust on Mars long ago, forming deep troughs at the Martian equator like the ones seen here. They occur in a transition zone between the maze-like region of Noctis Labyrinthus and the deep canyon system of Valles Marineris, the largest and "grandest" canyon in the solar system. These cracks in the crust can give geologists a good idea of what has happened over the course of the planet's history.

Find out a little yourself by taking a closer look at the western side of the trough in the top third of the image. Can you see how the bright sediment from the plateau above has been whisked over the side, overflowing and building up on the floor below? Follow the south wall of this same trough, and you'll come across a dark streak running down (toward the right side of the image). One possibility is that it could be a dust avalanche, but if that were so, you'd think it would have occurred much more often, in more places than just that one spot. Since it didn't, scientists believe it probably isn't a dust avalanche, but could be a gully instead.

There's also some more dark material deposited all around the easternmost ridge in the trough as well. No one is quite sure how it formed there or exactly what it's made of. At the least, what geologists can tell is that the ridges in the trough are made of the same material as the canyon walls, since the layers in each of them match. Finding similarities like these can help piece together the story of Martian geology here.

When scientists study THEMIS images, however, they are also on the lookout for anything that looks unusual. Try studying the dark depression that carves out the bottom of this image. It too is filled soft-looking sediments, probably deposited from erosion of the trough wall and possibly from the plateau above. Rocky outcrops all around the walls of this trough shield the areas directly below them from landslides from above.

But all that seems pretty regular. Do you see anything that stands out? How about the odd pattern of brighter material that seems almost pasted on the northwestern wall of the trough like dried up glue? This material isn't found elsewhere in this image. Sights like this pose a geological mystery, and one of the only ways to solve it is to seek more clues. Do similar formations occur elsewhere on Mars? Stay tuned with THEMIS researchers, because they'll be looking, trying to understand how and how often such features form.

Voir l'image PIA03813: Noctis Labyrinthus/Valles Marineris transition sur le site de la NASA.
| | PIA03813: Noctis Labyrinthus/Valles Marineris transition PIA03776.jpg =

PIA03776: Cerberus


(Released 24 April 2002)
The Science
The Cerberus feature is a relatively dark region at the southeastern edge of the huge Elysium Mons volcanic complex. It was visible to early astronomers of Mars because it was a distinctive dark spot on a large bright region of the planet. Today we recognize that the Cerberus region encompasses a range of geologic terrains from relatively young and smooth lava flows to the very rugged, ancient eroded landscape seen in this THEMIS image. The Cerberus feature has also proven to be ephemeral. Compared to just 20 years ago when the Viking orbiter instruments viewed the planet, the Cerberus feature has shrunk down from its original length of roughly 1000 kilometers to just a few isolated dark splotches of just a few 100 kilometers. This is testament to the active eolian environment on Mars where global dust storms can lift and then later deposit significant amounts of dust, brightening formerly dark surfaces. The THEMIS image occurs in a portion of Cerberus that remains relatively dark and dust-free although in the bottommost portion of the image are faint, criss-crossing lines that likely are dust devil tracks. The abundant dune-like features covering many of the low, smooth surfaces are similar to those found in many places across the planet. They are evidence of the interaction of wind and movable particles at the surface but not necessarily in today's environment. In many other places on Mars they are clearly inactive; relicts of a different climate.
The Story
Hellhound of Greek mythology, Cerberus was the three-headed, dragon-tailed dog that stood guard at the opening to the underworld. This rough-and-tumble Mars terrain looks just as fierce and foreboding. At the edge of the huge Elysium Mons volcano complex, the Cerberus area appeared as a dark spot to early Mars astronomers in an otherwise bright region of the planet. If this dark area seems somewhat hellish to your imagination too, you'll be glad to know that the Martian wind has been brightening up the area.

Just twenty years ago, the Viking orbiters reached Mars for the first long-term studies of Mars up close. The Cerberus feature was then almost 600 miles long, but has now been vanquished down to few small splotches about 60 miles long. Call that a triumph of lightness upon the surface, but don't think that the force bringing back the light is gentle and kind. The Martian wind can kick up a fierce global dust storm that lifts up the bright Martian dust into the air and then blankets the surface with the brighter material as it settles down again.

The ancient, eroded terrain in this image is still rather dark and dust free, so you might say it's one area where a mythical Cerberus still guards its shrinking territory. The wind teases it, however, by kicking up small, whirling dust devils that leave long, dark, scratchy tracks upon the land. Fields of dunes wrinkle the surface in places as well, but they may be permanently cemented upon the surface now, no longer able to blow and drift as they did in their younger days.

Voir l'image PIA03776: Cerberus sur le site de la NASA.
| | PIA03776: Cerberus PIA01359.jpg =

PIA01359: Hide and Seek


Context image for PIA01359
Hide and Seek

Exhumation of craters, the uncovering of old craters hidden from view by younger surface material, is common in many regions of Mars. This crater and its covering material are located in Amazonis Planitia.

Image information: VIS instrument. Latitude 3.7N, Longitude 194.9E. 18 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA01359: Hide and Seek sur le site de la NASA.
| | PIA01359: Hide and Seek PIA03692.jpg =

PIA03692: Layered Fan


Context image for PIA03692
Layered Fan

This beautiful fan deposit is located at the end of a mega-gully that empties into the southern trough of Coprates Chasma.

Image information: VIS instrument. Latitude -14.9N, Longitude 299.8E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03692: Layered Fan sur le site de la NASA.
| | PIA03692: Layered Fan PIA03767.jpg =

PIA03767: Southern rim of Isidis Planitia basin


(Released 11 April 2002)
The Science

This image, crossing the southern rim of the Isidis Planitia basin, displays the contrasting morphologies of the relatively rough highland terrain (in the lower portion of the image) and the relatively smooth materials of the basin (at top). Upon closer viewing, the basin materials display an extensive record of cratering, including a small cluster of craters just north and west of the two prominent craters in the upper part of the image. This cluster of craters may represent what are called "secondary" craters, which are craters that form as a result of the ejection of debris from a nearby impact. Alternatively, these craters may have formed simultaneously by the impact of many pieces of a larger meteoroid that broke up upon entry into Mars' atmosphere. The large craters in the image are approximately 800 meters (~875 yards) in diameter. Also visible in the image are dark streaks on the east-facing side of the north-south trending ridge. These streaks are likely the result of debris movement down slope. A dark patch of material is visible at the left of the image; dark materials are typically mobile sands, and linear dune forms are apparent within the dark patch.

The Story
Battered and beaten up, the surface of Mars reads like a history book to geologists, who want to study what has happened to the red planet over its geological history. Look for two larger craters diagonal from one another in the northern part of this image, and then for the smattering of tinier craters near them. How did these smaller craters come to be? Did a large meteoroid streak in through the Martian atmosphere and get broken up as it passed through, pummeling Mars moments later with its smaller, scattered pieces? Or were rocks and dirt blasted off the surface when the two larger craters were formed, only to rain down again on Mars shortly afterwards? No one quite knows for sure....

Another enigmatic-looking feature is near the left center of this image. Dark and shadowy-seeming, it looks something like an exclamation point with the small crater just below it. Look closely, and you'll see dunes within the large, dark, blurry patch, which is itself probably composed of moving sands. Dark, streaky features also appear on the eastern side of the ridge that runs down the right side of the image, showing how debris once tumbled down its steepened slopes.

Voir l'image PIA03767: Southern rim of Isidis Planitia basin sur le site de la NASA.
| | PIA03767: Southern rim of Isidis Planitia basin PIA01325.jpg =

PIA01325: Different Textures


Context image for PIA01325
Different Textures

From smooth topped mesas to rugged lowlands, this region of Mars near Huo Hsing Vallis presents several different surface textures.

Image information: VIS instrument. Latitude 29.6N, Longitude 67.2E. 19 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA01325: Different Textures sur le site de la NASA.
| | PIA01325: Different Textures PIA03760.jpg =

PIA03760: Rim of Henry Crater


(Released 02 April 2002)
This portion of the rim of Henry Crater has numerous dark streaks located on the slopes of the inner crater wall. These dark slope streaks have been suggested to have formed when the relatively bright dust that mantles the slopes slides downhill, either exposing a dust-free darker surface or creating a darker surface by increasing its roughness. The topography in this region appears muted, indicating the presence of regional dust mantling. The materials on floor of the crater (middle to lower left) are layered, with differing degrees of hardness and resistance to erosion producing cliffs (resistant layers) and ledges (easily eroded layers). These layered materials may have been originally deposited in water, although deposition by other means, such as windblown dust and sand, is also possible. Henry Crater, named after a 19th Century French astronomer, is 170 km in diameter and is located at 10.9° N, 336.7° W (23.3° E) in a region called Arabia Terra.

Voir l'image PIA03760: Rim of Henry Crater sur le site de la NASA.
| | PIA03760: Rim of Henry Crater PIA03805.jpg =

PIA03805: Surface Composition Differences in Martian Canyon

Color differences in this daytime infrared image taken by the camera on NASA's Mars Odyssey spacecraft represent differences in the mineral composition of the rocks, sediments and dust on the surface.

The image shows a portion of a canyon named Candor Chasma within the great Valles Marineris system of canyons, at approximately 5 degrees south latitude, 285 degrees east (75 degrees west) longitude. The area shown is approximately 30 by 175 kilometers (19 by 110 miles).

The image combines exposures taken by Odyssey's thermal emission imaging system at three different wavelengths of infrared light: 6.3 microns, 7.4 microns and 8.7 microns.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The thermal emission imaging system was provided by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. Lockheed Martin Astronautics, Denver, is the prime contractor for the project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and JPL. JPL is a division of the California Institute of Technology in Pasadena.

Voir l'image PIA03805: Surface Composition Differences in Martian Canyon sur le site de la NASA.

| | PIA03805: Surface Composition Differences in Martian Canyon PIA03288.jpg =

PIA03288: Polar Layers


Context image for PIA03288
Polar Layers

Late in the summer season, the numerous polar layers are free of frost and easily visible.

Image information: VIS instrument. Latitude -84.9N, Longitude 135.9E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03288: Polar Layers sur le site de la NASA.
| | PIA03288: Polar Layers PIA03638.jpg =

PIA03638: Polar Textures


Context image for PIA03638
Polar Textures

This image illustrates the variety of textures that appear in the south polar region during late summer.

Image information: VIS instrument. Latitude 80.5S, Longitude 57.9E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03638: Polar Textures sur le site de la NASA.
| | PIA03638: Polar Textures PIA03582.jpg =

PIA03582: Landslide


Context image for PIA03582
Landslide

This landslide occurred in Coprates Chasma.

Image information: VIS instrument. Latitude 12.6S, Longitude 296.9E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03582: Landslide sur le site de la NASA.
| | PIA03582: Landslide PIA03286.jpg =

PIA03286: Dissected Surface


Context image for PIA03286
Dissected Surface

Small channels dissect this region near Nectaris Fossae.

Image information: VIS instrument. Latitude -22.9N, Longitude 17.4E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03286: Dissected Surface sur le site de la NASA.
| | PIA03286: Dissected Surface PIA03636.jpg =

PIA03636: Where the Ice Ends


Context image for PIA03636
Where the Ice Ends

This image shows the margin of the south polar cap. The polar layers are prominently shown against the rocky surroundings.

Image information: VIS instrument. Latitude 71.7S, Longitude 142.3E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03636: Where the Ice Ends sur le site de la NASA.
| | PIA03636: Where the Ice Ends PIA03191.jpg =

PIA03191: Surface Texture


Context image for PIA03191
Surface Texture

Now that all the frost is gone, the south polar region is exhibiting more than just layering and surface markings. As this image shows, the polar surface is not smooth at this resolution.

Image information: VIS instrument. Latitude 85.9S, Longitude 192.5E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03191: Surface Texture sur le site de la NASA.
| | PIA03191: Surface Texture PIA02155.jpg =

PIA02155: Polar Markings


Context image for PIA02155
Polar Markings

These bright and dark markings occurred near the end of summer in the south polar region. The dark material is likely dust that has been freed of frost cover.

Image information: VIS instrument. Latitude -76.3N, Longitude 84.9E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA02155: Polar Markings sur le site de la NASA.
| | PIA02155: Polar Markings PIA03769.jpg =

PIA03769: Eastern Floor of Holden Crater


(Released 15 April 2002)
The Science

Today's THEMIS image covers territory on the eastern floor of Holden Crater, which is located in region of the southern hemisphere called Noachis Terra. Holden Crater is 154 km in diameter and named after American Astronomer Edward Holden (1846-1914). This image shows a mottled surface with channels, hills, ridges and impact craters. The largest crater seen in this image is 5 km in diameter. This crater has gullies and what appears to be horizontal layers in its walls.

The Story
With its beautiful symmetry and gullies radially streaming down to the floor, the dominant crater in this image is an impressive focal point. Yet, it is really just a small crater within a much larger one named Holden Crater. Take a look at the context image to the right to see just how much bigger Holden Crater is. Then come back to the image strip that shows the mottled surface of Holden Crater's eastern floor in greater detail, and count how many hills, ridges, channels, and small impact craters can be seen. No perfectly smooth terrain abounds there, that's for sure.

The textured terrain of Holden Crater has been particularly intriguing ever since the Mars Orbital Camera on the Mars Global Surveyor spacecraft found evidence of sedimentary rock layers there that might have formed in lakes or shallow seas in Mars' ancient past. This finding suggests that Mars may have been more like Earth long ago, with water on its surface. Holden Crater might even have held a lake long ago. No one knows for sure, but it's an exciting possibility. Why?

If water was once on the surface of Mars long enough to form sedimentary materials, maybe it was there long enough for microbial life to have developed too. (Life as we know it just isn't possible without the long-term presence of liquid water.) The question of life on the red planet is certainly tantalizing, but scientists will need to engage in a huge amount of further investigation to begin to know the answer. That's why orbital images of Holden Crater like this one are so important. They continue to help scientists piece together the answers to their fundamental questions about the planet's environment and its potential as a past or present habitat for life.

Voir l'image PIA03769: Eastern Floor of Holden Crater sur le site de la NASA.
| | PIA03769: Eastern Floor of Holden Crater PIA03281.jpg =

PIA03281: Canyon Variety


Context image for PIA03281
Canyon Variety

This image shows paret of the west end of Melas Chasma. Landslide deposits are visible at the top of the image, with dark dunes appearing at the bottom.

Image information: VIS instrument. Latitude -8.2N, Longitude 281.0E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03281: Canyon Variety sur le site de la NASA.
| | PIA03281: Canyon Variety PIA03845.jpg =

PIA03845: Amenthes Crater


(Released 11 July 2002)
The floor of a 75 km diameter crater in the Amenthes region of Mars displays lobate flow features in the center of this THEMIS image. It is possible that the flows are lava but there is no sign of the source vent. Note how the material has spread out across the floor of the crater and surrounds a peninsula of higher terrain in the lower 1/3 of the image. Wherever the flow encounters elevated topography it fails to lap up onto it and instead produces a distinct margin that in some places looks thicker than the rest of the flow. These are the features of a viscous material like lava but a dense mudflow could also produce such features. Viking and MOC wide angle images of this crater show a stubby channel entering from the southern rim, with the east side just visible in the bottom left of the THEMIS image. It is possible that a mudflow could have emerged from this channel, perhaps even multiple times, to produce the features we see today.


Voir l'image PIA03845: Amenthes Crater sur le site de la NASA.
| | PIA03845: Amenthes Crater PIA01866.jpg =

PIA01866: Sacra Mensa


Context image for PIA01866
Sacra Mensa

Tectonic activity in this region has not only fractured the surface, but has tilted some of the fracture blocks.

Image information: VIS instrument. Latitude 24.6N, Longitude 293.5E. 19 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA01866: Sacra Mensa sur le site de la NASA.
| | PIA01866: Sacra Mensa PIA02160.jpg =

PIA02160: Landslide


Context image for PIA02160
Landslide

This large landslide is located within Ganges Chasma.

Image information: VIS instrument. Latitude -7.6N, Longitude 315.8E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA02160: Landslide sur le site de la NASA.
| | PIA02160: Landslide PIA03839.jpg =

PIA03839: Terra Meridiani


(Released 28 June 2002)
The Science

This THEMIS visible image illustrates the complex terrains within Terra Meridiani. This general region is one of the more complex on Mars, with a rich array of sedimentary, volcanic, and impact surfaces that span a wide range of martian history. This image lies at the eastern edge of a unique geologic unit that was discovered by the Mars Global Surveyor Thermal Emission Spectrometer (TES) Science Team to have high concentrations of a unique mineral called grey (crystalline) hematite. As discussed by the TES Science Team, this mineral typically forms by processes associated with water, and this region appears to have undergone alteration by hydrothermal (hot water) or other water-related processes. As a result of this evidence for water activity, this region is a leading candidate for further exploration by one of NASA's upcoming Mars Exploration Rovers. The brightness and texture of the surface varies remarkably throughout this image. These differences are associated with different rock layers or ?units?, and can be used to map the occurrence of these layers. The number of layers indicates that extensive deposition by volcanic and sedimentary processes has occurred in this region. Since that time, however, extensive erosion has occurred to produce the patchwork of different layers exposed across the surface. Several distinct layers can be seen within the ~20 km diameter crater at the bottom (south) of the image, indicating that this crater once contained layers of sedimentary material that has since been removed. THEMIS infrared images of this region show that many of these rock layers have distinctly different temperatures, indicating that the physical properties vary from layer to layer. These differences suggest that the environment and the conditions under which these layers were deposited or solidified varied through time as these layers were formed.
The Story

Mars exploration is all about following the signs of past or present water on the red planet. That's because water is the key to understanding the history of the Martian environment (climate and geology), the potential for life to have developed there, and the potential for human exploration some day far in the future. All of the missions in the Mars Exploration Program contribute something special to science investigations about water on Mars and complement each other nicely.

For instance, take the above image. Given the contrasts, you can tell that this area is pretty complex. You've got a really old crater that's been eroded, and a rich array of volcanic surfaces and layers where material has been deposited through other processes. Now, that might make this area seem like any number of images you've already seen, but this terrain holds special appeal.

A science instrument on the Mars Global Surveyor spacecraft recently discovered that this area has really high concentrations of a unique mineral called grey (crystalline) hematite. That discovery was REALLY exciting to scientists, because hematite found on Earth typically develops in the presence of water. So, did this region have water on the surface long enough for the mineral to have formed sometime in the past? And if so, could that water have been around long enough for life to have developed at some point? After all, if water was around long enough for this mineral to have formed, then maybe, just maybe . . . .

Studies of this area by Odyssey and Mars Global Surveyor are helping to pave the way for the Mars Exploration Rovers, which are scheduled to land on Mars in 2004. This alluring, hematite-rich area above is called Terra Meridiani, and is one of the leading candidates among potential landing sites. At least one of the rovers may end up exploring this very terrain! While the rover won't have instruments for detecting signs of past or present life, it will be able to use its science instruments to study the rocks up close and to determine better under what environment conditions they formed. By comparing the rover's surface data with the orbital data, scientists will be able to refine their understanding of the area. Depending on what a rover finds if it lands there, who knows what the long line of future missions to this area might look like?

In the meantime, the above THEMIS image will give scientists more opportunities to study this exciting area right now. The brightness and texture of the surface varies remarkably throughout. That's because different rock layers settled on top of one another through a long history of changing environmental conditions before extensive erosion came along to strip layers unevenly away. That's what has produce the patchwork of different exposed layers seen above. Perhaps one layer formed during a wet period of history, and then another layer formed on top of it because of volcanic activity, and then another through wind deposits. Or some other combination. Any future rover fortunate enough to go here will have a field day, as it could potentially study them all!

THEMIS's concurrent analyses in the infrared also help in understanding the sequence of layering events through time. THEMIS's infrared studies essentially measure the temperatures of all of the rock layers. Not surprisingly, it turns out that they all have varying temperatures, indicating that the physical properties also differ from layer to layer. By mapping what type of material occurs where, scientists can add to their knowledge of climatic and geologic change through time . . . and maybe have even more to say on the question of water!


Voir l'image PIA03839: Terra Meridiani sur le site de la NASA.
| | PIA03839: Terra Meridiani PIA01945.jpg =

PIA01945: Arsia Flows


Context image for PIA01945
Arsia Flows

These layered volcanic flows originated from Arsia Mons.

Image information: VIS instrument. Latitude -19.1N, Longitude 244.0E. 18 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA01945: Arsia Flows sur le site de la NASA.
| | PIA01945: Arsia Flows PIA03842.jpg =

PIA03842: Hephaestus Fossae


(Released 3 July 2002)
Off the western flank of Elysium are the Hephaestus Fossae, including linear arrangements of small, round pits. These features are commonly called "pit chains" and most likely represent the collapse of lava tubes. Lava tubes allow molten rock to move long distances underground. When the lava drains out it leaves unsupported tunnels, which can collapse and form pits. These particular pit chains are unusual because they change direction abruptly. In the lower portion of the image, pits have collapsed at the bends and allow us to observe the sharp, nearly right angle corners. These direction changes are most likely due to some sort of structural control during the emplacement of the lava tubes.

There is an extraordinarily high concentration of small, degraded craters on the plains surface. The size range of these craters is fairly consistent and they all appear to be of similar age. It is unlikely that these were caused by primary impacts (impacts of meteors onto the surface) because both the size and timing distributions of primary impactors vary tremendously. However, the craters in the image could have been created from secondary impacts. Secondaries are impacts of material that is excavated during a large cratering event nearby or from the disintegration of a primary meteor in the atmosphere into many smaller parts that rain onto the surface.

In contrast to these older, small craters, there is a relatively young crater in the center of the image. A hummocky ejecta blanket is visible around the crater and has covered some of the smaller craters on the plain around it. The edges of the crater are sharp, formed by rocky material in the crater rim. This material is visible as the layer of rough, grooved material at the top of the inside walls. Small dust avalanches have left dark streaks down the inside walls of the crater.


Voir l'image PIA03842: Hephaestus Fossae sur le site de la NASA.
| | PIA03842: Hephaestus Fossae PIA03080.jpg =

PIA03080: Candor Chasma Floor


Context image for PIA03080
Candor Chasma Floor

This VIS image shows part of the layered and wind sculpted deposit that occurs on the floor of Candor Chasma.

Image information: VIS instrument. Latitude 6.6S, Longitude 284.4E. 17 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03080: Candor Chasma Floor sur le site de la NASA.
| | PIA03080: Candor Chasma Floor PIA03023.jpg =

PIA03023: Summer in the South


Context image for PIA03023
Summer in the South

This VIS image shows a small area just off the margin of the southern polar cap. During winter this region is completely covered by frost. Taken during the middle of summer, this image illlustrates the surface markings that appear as the frost and ice sublimate from different portions of the surface.

Image information: VIS instrument. Latitude 79.6S, Longitude 59.1E. 19 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03023: Summer in the South sur le site de la NASA.
| | PIA03023: Summer in the South PIA03784.jpg =

PIA03784: Crustal Fractures of Ophir Planum


(Released 29 April 2002)
The Science
This THEMIS image covers a tract of plateau territory called Ophir Planum. The most obvious features in this scene are the fractures (ranging from 1 to 5 km wide) running from the upper left to lower right. Localized rifting and deep-seated tension fracturing of the crust probably formed these cracks. The wall rock displayed in the upper part of the cliffs appears to be layered. The southwest-facing wall of the largest and uppermost fracture has classic spur and gully topography. This type of topography is created by differing amounts of erosion. Also seen in this image are some scattered impact craters and some dark wind streaks in the lower right. The Ophir Planum plateau separates two separate smaller canyon systems, not visible in this image, (Candor Chasma to the north and Melas Chasma to the south) in the Valles Marineris canyon complex. The whole Valles Marineris canyon system extends some 4,000 km across the equatorial realms of Mars. For comparison, this would stretch from New York City to San Francisco.

The Story
Plateaus and spurs might make you think of cowboys on the open plain.

"Spurs" in this context, however, are simply ridges that can be seen on the side of the southwest-facing wall of the large fracture that splits the terrain. Gullies stretch down this slope as well. Both of these features are caused by erosion, which is a mild force of change compared to whatever tension cracked the crust and ripped apart the land. The wall rock displayed in the upper part of the cliffs appears to be layered, suggesting that different kinds of rocks and minerals can be found in each banded zone.

The Ophir Planum plateau separates two separate canyon systems in the Valles Marineris complex, the largest canyon in the solar system. If Valles Marineris were on Earth, it would stretch from New York City all the way to San Francisco. That will give you some idea of the geological forces that have acted upon the planet over time.

Look for scattered impact craters and some dark wind streaks in the deep dark terrain (lower right) as well.

Voir l'image PIA03784: Crustal Fractures of Ophir Planum sur le site de la NASA.
| | PIA03784: Crustal Fractures of Ophir Planum PIA03830.jpg =

PIA03830: Canyons and Mesas of Aureum Chaos


(Released 17 June 2002)

This image contains a portion of Aureum Chaos located just south of the Martian equator. This fractured landscape contains canyons and mesas with two large impact craters in the upper left. The largest crater is older than the one above it. This is readily evident because a landslide deposit created by the smaller crater's impact is seen on the larger crater's floor. The overall scene has a rather muted appearance due to mantling by dust. Some small dark streaks can also be seen in this scene. These small dark streaks suggest that the materials covering this area occasionally become unstable and slide. Ridges of resistant material also can be observed in the walls of the canyons. The wall rock seen in the upper part of the cliffs appears to be layered. Classic spur and gully topography created by differing amounts of erosion and possibly different rock types is also visible here. One important observation to be made in this region is that there are no gullies apparent on the slopes such as those seen in Gorgonum Chaos (June 11th daily image). Latitude appears to play a major role in gully occurrence and distribution, with the gullies being predominately found pole ward of 30°.



Voir l'image PIA03830: Canyons and Mesas of Aureum Chaos sur le site de la NASA.
| | PIA03830: Canyons and Mesas of Aureum Chaos PIA01868.jpg =

PIA01868: Terra Sabaea


Context image for PIA01868
Terra Sabaea

This old crater in Terra Sabaea has patterned floor material that is indicative of having a volitile component. At high latitudes the volitile is most likely ice.

Image information: VIS instrument. Latitude 42.5N, Longitude 66.8E. 19 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA01868: Terra Sabaea sur le site de la NASA.
| | PIA01868: Terra Sabaea PIA03676.jpg =

PIA03676: Becquerel Crater


Context image for PIA03676
Linear Clouds

This interesting deposit is located on the floor of Becquerel Crater.

Image information: VIS instrument. Latitude 21.3N, Longitude 352.2E. 18 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03676: Becquerel Crater sur le site de la NASA.
| | PIA03676: Becquerel Crater PIA03913.jpg =

PIA03913: Promethei Terra


(Released 5 August 2002)
This image shows a landslide along a portion of a ridge in Promethei Terra. Landslides have very characteristic morphologies on Earth, which they also display on Mars. These morphologies include a distinctive escarpment at the uppermost part of the landslide--called a head scarp (seen at the bottom of this image), a down-dropped block of material below that escarpment that dropped almost vertically, and a deposit of debris that moved away from the escarpment at high speed. In this example, the wall rock displayed in the upper part of the cliff contains spurs and chutes created by differing amounts of erosion. The actual landslide deposit shows transverse ribs which are probably compressional features created upon emplacement of the landslide material. This image also contains a smoother plains member located in the upper part of the image and a somewhat rougher less cratered unit located below the smoother plains. This rougher unit is actually a debris apron surrounding the ridge (see context image). There are also what appear to be older more degraded landslide scars visible along the eastern portion of this ridge.


Voir l'image PIA03913: Promethei Terra sur le site de la NASA.
| | PIA03913: Promethei Terra PIA03783.jpg =

PIA03783: Noctis Labyrinthus


(Released 26 April 2002)
The Science
This image shows a portion of Noctis Labyrinthus, a large valley system at the western end of the Valles Marineris canyon system. Noctis Labyrinthus is notable for its unusual pattern of intersecting valleys, which give the region a maze-like appearance when viewed from above. The walls of these valleys are very high (~5 km) and quite steep, with slopes approaching 35°. Dust covers most of this region, leading to its rather uniform appearance. At the tops of the ridgelines, small dark streaks can be observed trailing downslope; these streaks suggest that the sediments covering this area occasionally become unstable and slide. Ridges of resistant material also can be observed in the highest terrains. In the lower half of the image, a small linear feature appears to cut across the generally NE/SW-trending slopes. This feature is not continuous, indicating that geologic activity has disrupted it since its formation. The northeastern termination of the feature is on a mesa, where it is joined by a less pronounced but similar feature that trends NE/SW. These small features may have originated in several ways: they may be ridges formed by compression, they may be small fault scarps, or they may represent the edges of ancient lava flows that have been disrupted by the formation of the valley system.

The Story
The smoothly sculpted surface in this close-up image belies the bizarre and twisted Martian landscape of which it is a part (seen at a larger scale in the context image). Labyrinths have long been in the human imagination, and it's no wonder that this area conjured up for early viewers all of the legends of antiquity, of a land where a Minotaur hides and a conquering hero needs a spool of thread to guide him through an inner maze.

As writer Jorge Luis Borges might say, this Martian region is a real-life example of a geological "garden of forking paths," a dangerous-seeming place where "the paths of the labyrinth converge." Noctis Labyrinthus, as it's called, is an area of sprawling, intersecting valleys on Mars, and like a Borgesian story, holds within it elusive truths about the passage of time and a multi-layered landscape of possibility.

At the western end of Valles Marineris, the largest canyon in the solar system, Noctis Labyrinthus holds the secrets to long-term geologic change in the area. It would be easy to lose oneself on a wandering path through the terrain. The walls of this Martian valley maze rise swiftly and steeply to their three-mile heights, and a layer of long-settled dust deceives the eye, making everything look the same. (Well, almost everything. Look closely, and some of realities of the labyrinth are revealed.)

From the tops of ridge lines, small, dark streaks trail down the sides, leaving scant but clear evidence of the sediment that once slid downslope. A long, jagged slash cuts the land (lower third of the image), but is broken in the middle by some unknown geologic force that moved the land through it, "erasing it" sometime later. And then the mysteries: what are the features seen in this image and how did they come to be? Ridges formed by compression? Small cliff lines ("scarps") caused by faults? Or perhaps the edges of ancient lava flows, disrupted by the formation of the valley system?

Whatever they are, they represent well the strange and misleading passageways of legend and lore, where the way to the truth of the matter and back again is hard to find.

Voir l'image PIA03783: Noctis Labyrinthus sur le site de la NASA.
| | PIA03783: Noctis Labyrinthus PIA03024.jpg =

PIA03024: Polar Etched Terrain


Context image for PIA03024
Polar Etched Terrain

This low resolution VIS image shows a large portion of etched terrain near the south pole of Mars.

Image information: VIS instrument. Latitude 79.6S, Longitude 295.8E. 35 meter/pixel resolution.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA03024: Polar Etched Terrain sur le site de la NASA.
| | PIA03024: Polar Etched Terrain PIA01771.jpg =

PIA01771: Flank Flows


Context image for PIA01771
Flank Flows

The narrow, channelized lava flows in this image occur on the flank of Olympus Mons.

Image information: VIS instrument. Latitude 15.9N, Longitude 223.1E. 18 meter/pixel resolution.

Please see the THEMIS Data Citation Note for details on crediting THEMIS images.

Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.



Voir l'image PIA01771: Flank Flows sur le site de la NASA.
| | PIA01771: Flank Flows PIA03837.jpg =

PIA03837: Small Volcano in Terra Cimmeria


(Released 26 June 2002)

The Science
This positive relief feature (see MOLA context) in the ancient highlands of Mars appears to be a heavily eroded volcanic center. The top of this feature appears to be under attack by the erosive forces of the martian wind. Light-toned streaks are visible, trending northeast to southwest, and may be caused by scouring of the terrain, or they may be dune forms moving sand. The northeast portion of the caldera area looks as though a layer of material is being removed to expose a slightly lighter-toned surface underneath. The flanks of this feature are slightly less cratered than the surrounding terrain, which could be explained in two ways: 1) this feature may be younger than the surrounding area, and has had less time to accumulate meteorite impacts, or 2) the slopes that are observed today may be so heavily eroded that the original, cratered surfaces are now gone, exposing relatively uncratered rocks. Although most of Terra Cimmeria has low albedo, some eastern portions, such as shown in this image, demonstrate an overall lack of contrast that attests to the presence of a layer of dust mantling the surface. This dust, in part, is responsible for the muted appearance and infill of many of the craters at the northern and southern ends of this image

The Story
This flat-topped volcano pops out from the surface, the swirls of its ancient lava flows running down onto the ancient highlands of Mars. Its smooth top appears to be under attack by the erosive forces of the martian wind.

How can you tell? Click on the image above for a close-up look. You'll see some light-toned streaks that run in a northeast-southwest direction. They are caused either by the scouring of the terrain or dunes of moving sand. Either way, the wind likely plays upon the volcano's surface. Look also for the subtle, nearly crescent shaped feature at the northeast portion of the volcano's cap. It looks as if a layer of material has been removed by the wind, exposing a slightly lighter-toned surface underneath.

The sides of the volcano are less cratered than the rest of the terrain. Perhaps that means it is younger than the surrounding area and has had less time to accumulate meteorite impacts. On the other hand, perhaps erosion has scrubbed away the original cratered surfaces. It's a little hard to tell which possibility holds the key to the history of this area.

Although most of Terra Cimmeria can look relatively darker (has a low albedo or low "reflective power") than some other Martian areas, its eastern portions sometimes have an overall lack of contrast as seen in the above image. A layer of dust blankets the surface here, causing it to look muted. Many of the craters in the northern and southern ends of the image also seem subdued, as dust has partly filled in the stark holes they once created.

The Cimmerians who give their name to this region were an ancient, little-known people of southern Russia mentioned in Assyrian inscriptions and by Homer.

Voir l'image PIA03837: Small Volcano in Terra Cimmeria sur le site de la NASA.
| | PIA03837: Small Volcano in Terra Cimmeria